分析 (1)由a,b,c是正實數(shù),運用均值不等式和不等式的可乘性,即可得證;
(2)運用分析法證明,通過兩邊平方,化簡整理,可得a2-1<a2,這顯然成立,即可得證.
解答 證明:(1)∵a,b,c是正實數(shù),
∴$\frac{a+b}{2}≥\sqrt{ab}$,$\frac{b+c}{2}≥\sqrt{bc}$,$\frac{c+a}{2}≥\sqrt{ca}$,
∴$\frac{a+b}{2}•\frac{b+c}{2}•\frac{c+a}{2}≥abc$,
當(dāng)且僅當(dāng)a=b=c時等號成立.
(2)∵$\sqrt{a+1}+\sqrt{a-1}>0,2\sqrt{a}>0$,
∴只要證${(\sqrt{a+1}+\sqrt{a-1})^2}<{(2\sqrt{a})^2}$,
即要證$2a+2\sqrt{{a^2}-1}<4a$,
即要證$\sqrt{{a^2}-1}<a$,
即要證a2-1<a2,這顯然成立,
所以當(dāng)a>1時,$\sqrt{a+1}+\sqrt{a-1}<2\sqrt{a}$.
點評 本題考查不等式的證明,注意運用均值不等式和分析法證明,考查運算和推理能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{2}{3}$,1] | B. | [1,9] | C. | [$\frac{2}{3}$,9] | D. | [$\frac{\sqrt{6}}{3}$,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k≥1 | B. | k>1 | C. | k≥2 | D. | k>2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
屆次 | 第26屆(亞特蘭大) | 第27屆(悉尼) | 第28屆(雅典) | 第29屆(北京) | 第30屆(倫敦) |
序號x | 1 | 2 | 3 | 4 | 5 |
金牌數(shù)y | 16 | 28 | 32 | 51 | 38 |
屆次 | 第26屆(亞特蘭大) | 第27屆(悉尼) | 第28屆(雅典) | 第29屆(北京) | 第30屆(倫敦) |
序號x | 1 | 2 | 3 | 4 | 5 |
金牌數(shù)y | 16 | 28 | 32 | 51 | 38 |
預(yù)測值$\stackrel{∧}{y}$ | |||||
y-$\stackrel{∧}{y}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com