精英家教網 > 高中數學 > 題目詳情

【題目】已知集合A={x|y= },B={y|y=( x},則A∩RB=(
A.{x|0<x<1}
B.{x|x≤1}
C.{x|x≥1}
D.

【答案】D
【解析】解:由log2x≥0,x≥1,∴A={x|x≥1},
∵B={y|0<y},∴RB={y|y≤0},
∴A∩RB=
故選:D.
【考點精析】解答此題的關鍵在于理解交、并、補集的混合運算的相關知識,掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法,以及對對數函數的定義域的理解,了解對數函數的定義域范圍:(0,+∞).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將分別標有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻,隨機摸出一球不放回;再隨機摸出一球兩次摸出的球上的漢字組成“孔孟”的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數fn(x)=﹣xn+3ax(a∈R,n∈N+),若對任意的x1 , x2∈[﹣1,1],都有|f3(x1)﹣f3(x2)|≤1,則a的取值范圍是(
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某山區(qū)養(yǎng)殖場散養(yǎng)的3500頭豬中隨機抽取5頭,測量豬的體長x(cm)和體重y(kg),得如下測量數據:

豬編號

1

2

3

4

5

x

169

181

166

185

180

y

95

100

97

103

101


(1)當且僅當x,y滿足:x≥180且y≥100時,該豬為優(yōu)等品,用上述樣本數據估計山區(qū)養(yǎng)殖場散養(yǎng)的3500頭豬中優(yōu)等品的數量;
(2)從抽取的上述5頭豬中,隨機抽取2頭中優(yōu)等品數x的分布列及其數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,CA,CB分別與圓O切于A,B兩點,AE是直徑,OF平分∠BOE交CB的延長線于F,BD∥AC.

(1)證明:OB2=BCBF;
(2)證明:∠DBF=∠AOB.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】要得到一個奇函數,只需將函數f(x)=sin2x﹣ cos2x的圖象(
A.向右平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向左平移 個單位

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數g(x)=alnx,對任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.

(1)求拋物線方程;

(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB=BC=2,∠ABC=120°,AD=CD= ,直線PC與平面ABCD所成角的正切為
(1)設E為直線PC上任意一點,求證:AE⊥BD;
(2)求二面角B﹣PC﹣A的正弦值.

查看答案和解析>>

同步練習冊答案