【題目】如圖,CA,CB分別與圓O切于A,B兩點,AE是直徑,OF平分∠BOE交CB的延長線于F,BD∥AC.

(1)證明:OB2=BCBF;
(2)證明:∠DBF=∠AOB.

【答案】
(1)證明:連接OC,由CA,CB為切線,可得CA=CB,

OA=OB,OC=OC,

即有△OAC≌△OBC,

即有∠AOC=∠BOC,

又OF平分∠BOE交CB的延長線于F,

可得∠EOF=∠BOF,

則∠FOC=∠FOB+∠BOC=∠EOF+∠AOC=90°,

在直角三角形COF中,OB為斜邊CF上的高,

由射影定理,可得OB2=BCBF


(2)證明:由∠CAO=∠CBO=90°,可得

四點C,A,O,B共圓,延長AC至M,

即有∠MCB=∠AOB,

由BD∥AC,可得∠DBF=∠MCB,

即有∠DBF=∠AOB


【解析】(1)連接OC,運(yùn)用切線的性質(zhì),可得△OAC≌△OBC,結(jié)合內(nèi)角平分線的定義,可得∠FOC=90°,由直角三角形的射影定理,即可得證;(2)由對角互補(bǔ),可得四點C,A,O,B共圓,延長AC至M,運(yùn)用兩直線平行的性質(zhì),即可得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),把函數(shù)的偶數(shù)零點按從小到大的順序排成一個數(shù)列,該數(shù)列的前10項的和等于( )

A. 45 B. 55 C. 90 D. 110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人各有相同的小球10個,在每人的10個小球中都有5個標(biāo)有數(shù)字1,3個標(biāo)有數(shù)字2,2個標(biāo)有數(shù)字3。兩人同時分別從自己的小球中任意抽取1個,規(guī)定:若抽取的兩個小球上的數(shù)字相同,則甲獲勝,否則乙獲勝,求乙獲勝的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fn(x)=﹣xn+3ax(a∈R,n∈N+),若對任意的x1 , x2∈[﹣1,1],都有|f3(x1)﹣f3(x2)|≤1,則a的取值范圍是(
A.[ , ]
B.[ ]
C.[ , ]
D.[ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線方程為,問:是否存在過點M(1,1)的直線l,使得直線與雙曲線交于PQ兩點,且M是線段PQ的中點?如果存在,求出直線的方程,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|y= },B={y|y=( x},則A∩RB=(
A.{x|0<x<1}
B.{x|x≤1}
C.{x|x≥1}
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數(shù)解,則a的取值范圍是(
A.(0, ]
B.[ ]
C.[ , ]∪{ }
D.[ )∪{ }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是_____________.

①.如果命題“”與命題“”都是真命題,那么命題一定是真命題.

②.命題,則

③.命題“若,則”的否命題是:“若,則

④.特稱命題 “,使”是真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在正數(shù),使得其中為自然對數(shù)的底數(shù),則實數(shù)的取值范圍是___________

查看答案和解析>>

同步練習(xí)冊答案