(2012•溫州一模)將9個相同的小球放入3個不同的盒子,要求每個盒子中至少有1個小球,且每個盒子中的小球個數(shù)都不同,則不同的放法共有( 。
分析:先考慮每個盒子中至少有1個小球,用擋板法,再考慮每個盒子中的小球個數(shù)都不同的放法,利用間接法可得結(jié)論.
解答:解:先考慮每個盒子中至少有1個小球,用擋板法,9個球中間8個空,插入兩個板,共有
C
2
8
=28

其中每個盒子中的小球個數(shù)都相同時,有1種放法;兩個盒子中的小球個數(shù)都相同時,包括:1,1,7;2,2,5;4,4,1,各有3種放法,共9種放法
所以不同的放法共有28-1-9=18種放法
故選B.
點評:本題考查排列、組合的應(yīng)用,考查擋板法、間接法的運用,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•溫州一模)已知函數(shù)f(x)滿足f(x)=2f(
1
x
)
,當(dāng)x∈[1,3]時,f(x)=lnx,若在區(qū)間[
1
3
,3]
內(nèi),函數(shù)g(x)=f(x)-ax,有三個不同的零點,則實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•溫州一模)如圖,在矩形ABCD中,AB=8,BC=4,E,F(xiàn),G,H分別為四邊的中點,且都在坐標(biāo)軸上,設(shè)
OP
OF
,
CQ
CF
(λ≠0).
(Ⅰ)求直線EP與GQ的交點M的軌跡Γ的方程;
(Ⅱ)過圓x2+y2=r2(0<r<2)上一點N作圓的切線與軌跡Γ交于S,T兩點,若
NS
NT
+r2=0
,試求出r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•溫州一模)如圖,在△ABC中,AD⊥BC,垂足為D,且BD:DC:AD=2:3:6.
(Ⅰ)求∠BAC的大小;
(Ⅱ)設(shè)E為AB的中點,已知△ABC的面積為15,求CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•溫州一模)某高校進行自主招生面試時的程序如下:共設(shè)3道題,每道題答對給10分、答錯倒扣5分(每道題都必須回答,但相互不影響).設(shè)某學(xué)生對每道題答對的概率都為
23
,則該學(xué)生在面試時得分的期望值為
15
15
分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•溫州一模)若圓x2+y2-4x+2my+m+6=0與y軸的兩個交點A,B位于原點的同側(cè),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案