8.已知$|{\vec a}|=4$,$|{\vec b}|=3$,且$(2\vec a-3\vec b)(2\vec a+\vec b)=61$,則$\vec a$在$\vec b$方向上的投影為-2.

分析 根據(jù)平面向量數(shù)量積公式求出$\overrightarrow{a}$•$\overrightarrow$的值,再求$\vec a$在$\vec b$方向上的投影大。

解答 解:$|{\vec a}|=4$,$|{\vec b}|=3$,且$(2\vec a-3\vec b)(2\vec a+\vec b)=61$,
∴4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow$-3${\overrightarrow}^{2}$=4×42-4$\overrightarrow{a}$•$\overrightarrow$-3×32=61,
解得$\overrightarrow{a}$•$\overrightarrow$=-6,
∴$\vec a$在$\vec b$方向上的投影為:
|$\overrightarrow{a}$|cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=$\frac{-6}{3}$=-2.
故答案為:-2.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積與向量投影的計(jì)算問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)F為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn),過點(diǎn)F的直線分別交兩條漸近線于A,B兩點(diǎn),OA⊥AB,若2|AB|=|OA|+|OB|,則該雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知正數(shù)a,b滿足2a+b≤ab,求證:a+2b≥9.
(2)求證:1,$\sqrt{2}$,3不可能是一個(gè)等差數(shù)列中的三項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知等差數(shù)列{an}中,2a2+a3+a5=20且前10項(xiàng)的和為S10=100,則數(shù)列{an}的公差d=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題正確的是( 。
A.$\overrightarrow{a}$與$\overrightarrow$共線,$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$與$\overrightarrow{c}$也共線
B.單位向量都相等
C.向量$\overrightarrow{a}$與$\overrightarrow$不共線,則$\overrightarrow{a}$與$\overrightarrow$都是非零向量
D.共線向量一定在同一直線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=$\sqrt{2}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{12}$對(duì)稱,當(dāng)x1,x2∈(-$\frac{17}{12}$π,-$\frac{2π}{3}$),x1≠x2時(shí),f(x1)=f(x2),則f(x1+x2)=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.大于3的正整數(shù)x滿足$C_{18}^x=C_{18}^{3x-6}$,x=( 。
A.6B.4C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.向量$\overrightarrow a=(3,4)$在向量$\overrightarrow b=(7,-24)$上的投影是-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.滿足條件$|{z-2i}|+|{z+1}|=\sqrt{5}$的點(diǎn)的軌跡是( 。
A.橢圓B.直線C.線段D.

查看答案和解析>>

同步練習(xí)冊(cè)答案