16.已知等差數(shù)列{an}中,2a2+a3+a5=20且前10項的和為S10=100,則數(shù)列{an}的公差d=2.

分析 利用等差數(shù)列的通項公式和前n項的和公式列出方程組,能求出數(shù)列{an}的公差.

解答 解:∵等差數(shù)列{an}中,2a2+a3+a5=20且前10項的和為S10=100,
∴$\left\{\begin{array}{l}{2({a}_{1}+d)+{a}_{1}+2d+{a}_{1}+4d=20}\\{10{a}_{1}+\frac{10×9}{2}d=100}\end{array}\right.$,
解得a1=1,d=2,
∴數(shù)列{an}的公差d=2.
故答案為:2.

點評 本題考查等差數(shù)列的公差的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義在R上的函數(shù)f(x)滿足:y=f(x-1)的圖象關(guān)于(1,0)點對稱,且當(dāng)x≥0時恒有f(x-$\frac{3}{2}$)=f(x+$\frac{1}{2}$),當(dāng)x∈[0,2)時,f(x)=ex-1,則f(2017)+f(-2016)=( 。
A.1-eB.-1-eC.e-1D.e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.拋物線y2=2px(p>0)的焦點為F,過點F的直線l與拋物線交于A,B兩點,O為坐標(biāo)原點,$\overrightarrow{OA}$$•\overrightarrow{OB}$=-12求拋物線的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若△ABC的邊BC上存在一點M(異于B,C),將△ABM沿AM翻折后使得AB⊥CM,則內(nèi)角A,B,C必滿足(  )
A.B≥90°B.B<90°C.C<90°D.A<90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.一袋中共有個大小相同的黑球5個和白球5個.
(1)若從袋中任意摸出2個球,求至少有1個白球的概率.
(2)現(xiàn)從中不放回地取球,每次取1個球,取2次,已知第1次取得白球,求第2次取得黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.向量$\overrightarrow a$,$\overrightarrow b$滿足$|\overrightarrow a+\overrightarrow b|=2\sqrt{3}|\overrightarrow a|$,且$(\overrightarrow a-\overrightarrow b)•\overrightarrow a=0$,則$\frac{{|{\overrightarrow a}|}}{{|{\overrightarrow b}|}}$為(  )
A.0B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$|{\vec a}|=4$,$|{\vec b}|=3$,且$(2\vec a-3\vec b)(2\vec a+\vec b)=61$,則$\vec a$在$\vec b$方向上的投影為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出下面四個函數(shù):①y=cos|2x|;②y=|sinx|;③$y=cos(2x+\frac{π}{4})$;④$y=tan(2x-\frac{π}{3})$.其中最小正周期為π的有( 。
A.①②③B.②③④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=-1+\sqrt{2}sinα}\end{array}}\right.$(α為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為$\sqrt{2}ρsin(θ+\frac{π}{4})=1$.
( I)寫出曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
( II)若直線l與曲線C交于A、B兩點,求△OAB的面積.

查看答案和解析>>

同步練習(xí)冊答案