若F1,F(xiàn)2是橢圓
x2
9
+
y2
4
=1
的兩個(gè)焦點(diǎn),A、B是過焦點(diǎn)F1的弦,則△ABF2的周長(zhǎng)為(  )
A、6B、4C、12D、8
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出橢圓的a=3,由橢圓的定義,可得△ABF2的周長(zhǎng)為4a,計(jì)算即可得到.
解答: 解:橢圓
x2
9
+
y2
4
=1
的a=3,
由橢圓的定義,可得,
|AF1|+|AF2|=|BF1|+|BF2|=2a,
則△ABF2的周長(zhǎng)為|AB|+|AF2|+|BF2|
=|AF1|+|BF1|+|AF2|+|BF2|=4a=12.
故選C.
點(diǎn)評(píng):本題考查橢圓的方程和性質(zhì),主要考查橢圓的定義,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β都是銳角,且sin(α+β)=2sinα,求證:α<β.(用反證法證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC的外接圓的切線AE與BC的延長(zhǎng)線交于點(diǎn)E,∠BAC的平分線與BC交于點(diǎn)D.
(1)求證:ED2=EC•EB
(2)若BC是△ABC的外接圓的直徑,且BC=2,CE=1.求AC長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P到x軸的距離的平方恰比點(diǎn)P的橫縱坐標(biāo)的乘積小1.記動(dòng)點(diǎn)P的軌跡為C,下列對(duì)于曲線C的描述正確的是
 

①曲線C關(guān)于原點(diǎn)對(duì)稱;
②曲線C關(guān)于直線y=x對(duì)稱;
③當(dāng)變量|y|逐漸增大時(shí),曲線C無限接近直線y=x;
④當(dāng)變量|y|逐漸減小時(shí),曲線C與x軸無限接近.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
4
+y2=1的焦點(diǎn)為F1,F(xiàn)2,若點(diǎn)P在橢圓上,且滿足|PO|2=|PF1|•|PF2|(其中O為坐標(biāo)原點(diǎn)),則稱點(diǎn)P為“★點(diǎn)”,那么該橢圓上“★點(diǎn)”的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知lg(a-1)+lg(b-2)=lg2,則a+b的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)的最小正周期為T,且在一個(gè)周期內(nèi)的圖象如圖所示,
(1)求函數(shù)的解析式;
(2)若函數(shù)g(x)=f(mx)+1(m>0)的圖象關(guān)于點(diǎn)M(
3
,0)對(duì)稱,且在區(qū)間[0,
π
2
]上不是單調(diào)函數(shù),求m的取值所構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan2α+6tanα+7=0,tan2β+6tanβ+7=0,α,β∈(0,π)且α≠β,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=6x的準(zhǔn)線方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案