設{an}是各項互不相等的正數(shù)等差數(shù)列,{bn}是各項互不相等的正數(shù)等比數(shù)列,a1=b1,a2n+1=b2n+1,則( 。
A、an+1>bn+1
B、an+1≥bn+1
C、an+1<bn+1
D、an+1=bn+1
考點:等差數(shù)列與等比數(shù)列的綜合
專題:等差數(shù)列與等比數(shù)列
分析:先利用等差中項和等比中項的定義把an+1和bn+1表示出來,在對其作差利用基本不等式得結論.
解答: 解:因為等差數(shù)列{an}和等比數(shù)列{bn}各項都是正數(shù),且a1=b1,a2n+1=b2n+1
所以an+1-bn+1=
a1+a2n+1
2
-
b1b2n+1
=
a1+a2n+1-2
a1+a2n+1
2
=
(
a1
-
a2n+1
)2
2
≥0.
即 an+1≥bn+1
故選 A.
點評:本題主要考查等差中項:x,A,y成等差數(shù)列?2A=x+y,等比中項:x、G、y成等比數(shù)列⇒G2=xy,或G=±xy.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知i為虛數(shù)單位,復數(shù)z滿足(i-1)z=2i3,則z等于( 。
A、1-iB、-1+i
C、2-2iD、-2+2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={y|y=-x2-2x},B={x|y=
x-a
},且A∪B=R,則實數(shù)a的最大值是( 。
A、1B、-1C、0D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設α表示平面,a,b表示直線,給出下列四個命題:
①a∥α,a⊥b⇒b∥α;      
②a∥b,a⊥α⇒b⊥α;
③a⊥α,a⊥b⇒b?α;     
④a⊥α,b⊥α⇒a∥b.
其中正確命題的序號是( 。
A、①②B、②④C、③④D、①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

半徑為10,中心角為
π
5
的扇形的面積為(  )
A、2πB、6πC、8πD、10π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:y=2x+1,l2:y=2x+5,則直線l1與l2的位置關系是( 。
A、重合B、垂直
C、相交但不垂直D、平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于正項數(shù)列{an},定義Hn=
n
a1+2a2+3a3+…+nan
為{an}的“給力”值,現(xiàn)知某數(shù)列的“給力”值為Hn=
2
n+2
,則數(shù)列{an}的通項公式為an=( 。
A、
1
2n
+1
B、
1
n
+1
C、
1
2
+n
D、2n-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)正方體ABCD-A1B1C1D1中,直線A1B與平面A1B1CD所成的角的正切值等于(  )
A、1
B、
3
3
C、
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的公比為q(0<q<1),且a2+a5=
9
8
,a3a4=
1
8

(1)求數(shù)列{an}的通項公式;
(2)設該等比數(shù)列{an}的前n項和為Sn,正整數(shù)m,n滿足
Sn-m
Sn+1-m
1
2
,求出所有符合條件的m,n的值.

查看答案和解析>>

同步練習冊答案