【答案】
分析:(1)本題考查的是定函數(shù)與動區(qū)間的問題,是一元二次函數(shù)中的一動一定的問題,解題時要針對于二次函數(shù)的對稱軸與區(qū)間的關系進行討論,即對稱軸在區(qū)間上,或是在區(qū)間的左邊或右邊.
(2)遇到關于兩個函數(shù)的圖象的交點個數(shù)的問題,一般是構造新函數(shù),題目轉(zhuǎn)化為研究函數(shù)的零點問題,通過導數(shù)得到函數(shù)的最值,把函數(shù)的最值同0進行比較,得到結(jié)果.
解答:解:(I)f(x)=-x
2+8x=-(x-4)
2+16.
當t+1<4,即t<3時,f(x)在[t,t+1]上單調(diào)遞增,
h(t)=f(t+1)=-(t+1)
2+8(t+1)=-t
2+6t+7;
當t≤4≤t+1,即3≤t≤4時,h(t)=f(4)=16;
當t>4時,f(x)在[t,t+1]上單調(diào)遞減,
h(t)=f(t)=-t
2+8t.
綜上,
(II)函數(shù)y=f(x)的圖象與y=g(x)的圖象有且只有三個不同的交點,
即函數(shù)m(x)=g(x)-f(x)的圖象與x軸的正半軸有且只有三個不同的交點.
∵m(x)=x
2-8x+6lnx+m,
∴
,
當x∈(0,1)時,m'(x)>0,m(x)是增函數(shù);
當x∈(1,3)時,m'(x)<0,m(x)是減函數(shù);
當x∈(3,+∞)時,m'(x)>0,m(x)是增函數(shù);
當x=1,或x=3時,m'(x)=0.
∴m(x)
最大值=m(1)=m-7,m(x)
最小值=m(3)=m+6ln3-15.
∵當x充分接近0時,m(x)<0,當x充分大時,m(x)>0.
∴要使m(x)的圖象與x軸正半軸有三個不同的交點,必須且只須
即7<m<15-6ln3.
∴存在實數(shù)m,使得函數(shù)y=f(x)與y=g(x)的圖象有且只有三個不同的交點,m的取值范圍為(7,15-6ln3).
點評:本小題主要考查函數(shù)的單調(diào)性、極值、最值等基本知識,考查運用導數(shù)研究函數(shù)性質(zhì)的方法,考查運算能力,考查函數(shù)與方程、數(shù)形結(jié)合、分類與整合等數(shù)學思想方法和分析問題、解決問題的能力.