16.函數(shù)f(x)=2cos($\frac{x}{2}+\frac{π}{4}$)(x∈R)的最小正周期為(  )
A.$\frac{π}{2}$B.πC.D.

分析 根據(jù)三角函數(shù)的周期公式即可得到結(jié)論.

解答 解:函數(shù)f(x)=2cos($\frac{x}{2}+\frac{π}{4}$)(x∈R)
函數(shù)的周期T=$\frac{2π}{|ω|}=\frac{2π}{\frac{1}{2}}=4π$,
故選D

點評 本題主要考查三角函數(shù)的圖象和性質(zhì),比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.若n是7777-10除以19的余數(shù),則${({\frac{5}{2x}-\frac{2}{5}\root{3}{x^2}})^n}$的展開式中的常數(shù)項為$\frac{168}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足$A=\frac{2π}{3}$,a2=2bc+3c2,則$\frac{c}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若函數(shù)y=ax+b的部分圖象如圖所示,則( 。
A.0<a<1,-1<b<0B.0<a<1,0<b<1C.1<a,-1<b<0D.1<a,0<b<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.函數(shù)f(x)=loga(x-3a)與函數(shù)$g(x)={log_a}\frac{1}{x-a}$(a>0,且a≠1)在給定區(qū)間[a+2,a+3]上有意義.
(1)求a的取值范圍;
(2)若在給定區(qū)間[a+2,a+3]上恒有|f(x)-g(x)|≤1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為10,一條漸近線為y=$\frac{1}{2}$x,則該雙曲線的方程為(  )
A.$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}$=1C.$\frac{{x}^{2}}{80}-\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{80}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.一個幾何體的三視圖如圖所示,則這個幾何體的體積等于(  )
A.6B.12C.18D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若sinα=$\frac{4}{5}$,且α為銳角,則tanα的值等于( 。
A.$\frac{4}{3}$B.-$\frac{3}{4}$C.$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.將一枚硬幣先后拋擲兩次,恰好出現(xiàn)一次正面的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習冊答案