分析 利用二項式定理求得7777-10除以19的余數(shù)為n=10,再在 ${(\frac{5}{2x}-\frac{2}{5}{•x}^{\frac{2}{3}})}^{10}$的展開式的通項共公式中,令x的冪指數(shù)等于0,求得r的值,即可求得展開式中的常數(shù)項的值.
解答 解:又由7777-10=(76+1)77-10=C7707677+C7717676+C7727675+…+C777676+1-10,
故7777-10除以19的余數(shù)為-9,即7777-10除以19的余數(shù)為10,可得n=10.
∴則${({\frac{5}{2x}-\frac{2}{5}\root{3}{x^2}})^n}$=${(\frac{5}{2x}-\frac{2}{5}{•x}^{\frac{2}{3}})}^{10}$的展開式的通項共公式為Tr+1=${C}_{10}^{r}$•(-1)r•${(\frac{5}{2})}^{10-2r}$•${x}^{\frac{5r}{3}-10}$,
令$\frac{5r}{3}$-10=0,求得r=6,∴展開式中的常數(shù)項為${C}_{10}^{6}$•${(\frac{5}{2})}^{-2}$=$\frac{168}{5}$,
故答案為:$\frac{168}{5}$.
點評 本題主要考查二項式定理的應(yīng)用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x sin x | B. | -x sin x | C. | x cos x | D. | -xcos x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1) | B. | (-4,2) | C. | (-4,-1) | D. | (-4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 192 | B. | 300 | C. | 252 | D. | 360 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | π | C. | 2π | D. | 4π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com