精英家教網 > 高中數學 > 題目詳情
20.已知兩個具有線性相關關系的變量的一組數據(x1,y1),(x2,y2)…(xn,yn),且回歸直線方程為$\hat{y}$=a+bx,則最小二乘法的思想是( 。
A.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]最小B.使得$\sum_{i=1}^{n}$|yi-(ai+bxi)|最小
C.使得$\sum_{i=1}^{n}$[yi2-(ai+bxi2]最小D.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]2最小

分析 根據最小二乘法是通過最小化誤差的平方和尋找數據的最佳函數匹配,對照選項即可得出正確的結論.

解答 解:最小二乘法是通過最小化誤差的平方和尋找數據的最佳函數匹配,利用最小二乘法使得這組數據與實際數據之間誤差的平方和為最小,
即使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]2最。
故選:D.

點評 本題考查了最小二乘法原理的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

12.已知等差數列{an}的前n項和為Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比數列.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若數列{bn}滿足$\frac{_{1}}{3}$+$\frac{_{2}}{{3}^{2}}$+…+$\frac{_{n}}{{3}^{n}}$=an-1(n∈N*),求數列{nbn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.在某中學的“校園微電影節(jié)”活動中,學校將從微電影的“點播量”和“專家評分”兩個角度來進行評優(yōu).若A電影的“點播量”和“專家評分”中至少有一項高于B電影,則稱A電影不亞于B電影,已知共有10部微電影參展,如果某部電影不亞于其他9部,就稱此部電影為優(yōu)秀影片,那么在這10部微電影中,最多可能有10部優(yōu)秀影片.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.($\sqrt{x}$-$\frac{1}{\sqrt{x}}$)7展開式中,系數最大項是第5項.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.下面幾種推理中是演繹推理的選項為( 。
A.由金、銀、銅、鐵可導電,猜想:金屬都可以導電
B.猜想數列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通項公式為an=$\frac{1}{n(n+1)}$(n∈N+
C.由平面直角坐標系中圓的方程為(x-a)2+(y-b)2=r2,推測空間直角坐標系中球的方程為(x-a)2+(y-b)2+(z-c)2=r2
D.半徑為r圓的面積S=πr2,則單位圓的面積S=π

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.設集合M={-1,1},N={x|{x<0或x>$\frac{1}{2}}$},則下列結論正確的是( 。
A.N⊆MB.N∩M=∅C.M⊆ND.M∪N=R

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.26B.11C.4D.1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.在平行四邊形ABCD 中,AC與BD 交于點O,E 是線段 OD的中點,AE的延長線與CD 交于點F.若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow$,則$\overrightarrow{AF}$(  )
A.$\frac{3}{4}\overrightarrow{a}$+$\frac{1}{4}\overrightarrow$B.$\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}\overrightarrow$C.$\frac{1}{4}\overrightarrow{a}$+$\frac{3}{4}\overrightarrow$D.$\frac{2}{3}\overrightarrow{a}$+$\frac{1}{3}\overrightarrow$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知角α終邊上一點P(-4,3 ),求$\frac{cos(\frac{3π}{2}+α)sin(-5π-α)}{cos(6π-α)sin(\frac{π}{2}+α)tan(-3π+α)}$.

查看答案和解析>>

同步練習冊答案