在已給的坐標(biāo)系中,畫出同時(shí)滿足下列條件的一個(gè)函數(shù)的圖像,

的定義域是[-2,2];②是奇函數(shù);③上是減函數(shù);

既有最大值,又有最小值;

;

不存在反函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時(shí)亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標(biāo)系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對(duì)?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當(dāng)n為正整數(shù)時(shí),定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省三明市高一第一次段考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

(1)用分段函數(shù)的形式表示該函數(shù);

(2)在右邊所給的坐標(biāo)系中畫出該函數(shù)的圖象;

(3)寫出該函數(shù)的定義域、值域、奇偶性、單調(diào)區(qū)間(不要求證明).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山東省高一上學(xué)期第四次月考數(shù)學(xué)試卷 題型:解答題

已知函數(shù).

(1)用分段函數(shù)的形式表示該函數(shù);

(2)在右邊所給的坐標(biāo)系中畫出該函數(shù)的圖象;

(3)寫出該函數(shù)的定義域、值域、奇偶性、單調(diào)區(qū)間(不要求證明).

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省實(shí)驗(yàn)中學(xué)考前熱身訓(xùn)練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時(shí)亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標(biāo)系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對(duì)?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當(dāng)n為正整數(shù)時(shí),定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若,證明:(i,n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案