3.$\overrightarrow{AB}+\overrightarrow{BD}-\overrightarrow{AC}$=( 。
A.$\overrightarrow{AC}$B.$\overrightarrow{CD}$C.$\overrightarrow{AB}$D.$\overrightarrow{DB}$

分析 直接利用向量的加法及減法法則寫出結(jié)果即可.

解答 解:由向量加法及減法的運算法則可知:向量$\overrightarrow{AB}+\overrightarrow{BD}-\overrightarrow{AC}$=$\overrightarrow{CD}$.
故選:B.

點評 本題考查向量的基本運算,基本知識的考查,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直線x=x1,x=x2是y=f(x)圖象的任意兩條對稱軸,且|x1-x2|的最小值為$\frac{π}{4}$.
(1)求f(x)的表達(dá)式;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個單位長度后,再將得到的圖象上各點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若a<b<0,則下列不等中不成立的是(  )
A.|a|>|b|B.$\frac{1}{a+b}>\frac{1}{a}$C.$\frac{1}>\frac{1}{a}$D.a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)非零向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$,則( 。
A.$\overrightarrow a⊥\overrightarrow b$B.$|\overrightarrow a|=|\overrightarrow b|$C.$\overrightarrow a∥\overrightarrow b$D.$|\overrightarrow a|>|\overrightarrow b|$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.行駛中的汽車,在剎車時由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離.在某種路面上,某種型號汽車的剎車距離y(m)與汽車的車速x(km/h)滿足下列關(guān)系:y=$\frac{nx}{100}$+$\frac{x^2}{400}$(n為常數(shù),且n∈N).
我們做過兩次剎車試驗,第一次剎車時車速為40km/h,有關(guān)數(shù)據(jù)如圖所示,其中$\left\{\begin{array}{l}5<{y_1}<7\\ 13<{y_2}<15.\end{array}\right.$
(1)求出n的值;
(2)要使剎車距離不超過18.4m,則行駛的最大速度應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=|ax-x2|+2b(a,b∈R).
(1)當(dāng)b=0時,若不等式f(x)≤2x在x∈[0,2]上恒成立,求實數(shù)a的取值范圍;
(2)已知a為常數(shù),且函數(shù)f(x)在區(qū)間[0,2]上存在零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<1}\\{{x}^{2}+ax,x>1}\end{array}\right.$,若f(f(0))=4a,則實數(shù)a等于( 。
A.$\frac{1}{2}$B.$\frac{4}{5}$C.2D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知無窮數(shù)列{an}的首項為1,數(shù)列{bn}滿足${b_n}={a_{n+1}}-{a_n},n∈{N^*}$.
(1)若${b_n}={2^n}$,求數(shù)列{an}的前n項和;
(2)若bn=bn-1bn+1(n≥2),且${b_1}=1,{b_2}=b({b≠0,-1,-\frac{1}{2}})$,求證:
①數(shù)列{bn}的前6項積為定值;
②數(shù)列{an}中的任一項都不會在該數(shù)列中出現(xiàn)無數(shù)次.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.底面為正方形的四棱錐S-ABCD,且SD⊥平面ABCD,SD=$\sqrt{2}$,AB=1,線段SB上一M點滿足$\frac{SM}{MB}$=$\frac{1}{2}$,N為線段CD的中點,P為四棱錐S-ABCD表面上一點,且DM⊥PN,則點P形成的軌跡的長度為(  )
A.$\sqrt{2}$B.$\frac{5\sqrt{2}}{4}$C.$\frac{3\sqrt{2}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案