【題目】如圖,在四棱錐中,平面,底面四邊形是菱形,點(diǎn)O是對角線的交點(diǎn),,M的中點(diǎn),連接

1)證明:平面;

2)證明:平面平面

3)當(dāng)三棱錐的體積等于時(shí),求的長.

【答案】1)證明見解析;(2)證明見解析;(3

【解析】

1)由題意結(jié)合平面幾何的知識(shí)可得,再由線面平行的判定即可得證;

2)由題意結(jié)合平面幾何的知識(shí)、線面垂直的性質(zhì)可得、,再由線面垂直的判定、面面垂直的判定即可得證;

3)由題意,利用三棱錐的體積公式即可得解.

1)證明:因?yàn)榈酌嫠倪呅?/span>是菱形,所以O的中點(diǎn),

M的中點(diǎn),所以

因?yàn)?/span>平面,平面,所以平面

2)證明:因?yàn)榈酌嫠倪呅?/span>是菱形,所以,

因?yàn)?/span>平面平面,所以,

,所以平面

平面,所以平面平面;

3)因?yàn)榈酌嫠倪呅?/span>是菱形,且,

所以,

,三棱錐的高為

所以,解得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為.經(jīng)過點(diǎn)且傾斜角為的直線與橢圓交于兩點(diǎn)(其中點(diǎn)軸上方),的周長為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)如圖,把平面沿軸折起來,使軸正半軸和軸確定的半平面,與軸負(fù)半軸和軸所確定的半平面互相垂直,若折疊后的周長為,求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,點(diǎn)為棱的中點(diǎn).

1)證明:;

2)求直線與平面所成角的正弦值;

3)若為棱上一點(diǎn),滿足,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,過曲線外的一點(diǎn)(其中,為銳角)作平行于的直線與曲線分別交于

(Ⅰ) 寫出曲線和直線的普通方程(以極點(diǎn)為原點(diǎn),極軸為 軸的正半軸建系);

)若成等比數(shù)列,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)設(shè)的極值點(diǎn),求實(shí)數(shù)的值,并求的單調(diào)區(qū)間:

(2)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O,對稱軸為軸,其準(zhǔn)線為.

1)求拋物線C的方程;

2)設(shè)直線,對任意的拋物線C上都存在四個(gè)點(diǎn)到直線l的距離為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有十二生肖,又叫十二屬相,每一個(gè)人的出生年份對應(yīng)了十二種動(dòng)物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)中的一種.現(xiàn)有十二生肖的吉祥物各一個(gè),已知甲同學(xué)喜歡牛、馬和猴,乙同學(xué)喜歡牛、狗和羊,丙同學(xué)所有的吉祥物都喜歡,讓甲乙丙三位同學(xué)依次從中選一個(gè)作為禮物珍藏,若各人所選取的禮物都是自己喜歡的,則不同的選法有(

A.50B.60C.80D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(,是自然對數(shù)的底數(shù)).

1)討論的單調(diào)性;

2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國新冠肺炎疫情進(jìn)入常態(tài)化,各地有序推進(jìn)復(fù)工復(fù)產(chǎn),下面是某地連續(xù)11天復(fù)工復(fù)產(chǎn)指數(shù)折線圖,下列說法正確的是( )

A.11天復(fù)工指數(shù)和復(fù)產(chǎn)指數(shù)均逐日增加;

B.11天期間,復(fù)產(chǎn)指數(shù)增量大于復(fù)工指數(shù)的增量;

C.3天至第11天復(fù)工復(fù)產(chǎn)指數(shù)均超過80%;

D.9天至第11天復(fù)產(chǎn)指數(shù)增量大于復(fù)工指數(shù)的增量;

查看答案和解析>>

同步練習(xí)冊答案