【題目】若函數(shù)處取得極大值或極小值,則稱為函數(shù)的極值點.已知函數(shù).

1)當時,求的極值;

2)若在區(qū)間上有且只有一個極值點,求實數(shù)的取值范圍.

【答案】1)極小值;(2.

【解析】

(1)求出,令求出方程的解,從而探究的變化情況,即可求出極值.

(2)求出,令,分,三種情況進行討論,結合零點存在定理求出實數(shù)的取值范圍.

解:(1)當時,的定義域為,,

,解得,則的變化如下表,

上是減函數(shù),在上是增函數(shù);

時取得極小值;

2)函數(shù)的定義域為,,

,則,

時,恒成立,故上是增函數(shù),

,故當時,恒成立,

在區(qū)間上單調(diào)遞增,故在區(qū)間上沒有極值點;

時,由(1)知,在區(qū)間上沒有極值點;

時,令,解得(舍去);

上是增函數(shù),在上是減函數(shù),

①當,即時,

上有且只有一個零點,且在該零點兩側(cè)異號,

②令,不符合題意;

③令,所以,

,又,

所以上有且只有一個零點,且在該零點兩側(cè)異號,

綜上所述,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,已知四邊形為矩形,,,的角平分線.

1)求證:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,以橢圓的頂點為頂點的四邊形的面積為,且該四邊形內(nèi)切圓的半徑為.

1)求橢圓的方程;

2)設是過橢圓中心的任意一條弦,直線是線段的垂直平分線,若是直線與橢圓的一個交點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了積極穩(wěn)妥疫情期間的復學工作,市教育局抽調(diào)5名機關工作人員去某街道3所不同的學校開展駐點服務,每個學校至少去1人,若甲、乙兩人不能去同一所學校,則不同的分配方法種數(shù)為___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表1所示:

1

1

2

3

4

5

6

7

6

11

21

34

66

101

196

根據(jù)以上數(shù)據(jù),繪制了散點圖.

1)根據(jù)散點圖判斷,在推廣期內(nèi),均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由).

2)根據(jù)(1)的判斷結果及表1中的數(shù)據(jù),建立關于的回歸方程,并預測活動推出第8天使用掃碼支付的人次.

3)推廣期結束后,為更好的服務乘客,車隊隨機調(diào)查了100人次的乘車支付方式,得到如下結果:

2

支付方式

現(xiàn)金

乘車卡

掃碼

人次

10

60

30

已知該線路公交車票價2元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)調(diào)査結果發(fā)現(xiàn):使用掃碼支付的乘客中有5名乘客享受7折優(yōu)惠,有10名乘客享受8折優(yōu)惠,有15名乘客享受9折優(yōu)惠.預計該車隊每輛車每個月有1萬人次乘車,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應事件發(fā)生的概率,在不考慮其他因素的條件下,按照上述收費標準,試估計該車隊一輛車一年的總收入.

參考數(shù)據(jù):

62.14

1.54

2535

50.12

3.47

其中.

參考公式:

對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓的右頂點到直線的距離為3.

1)求橢圓的方程;

2)過點的直線與橢圓交于,兩點,求的面積的最大值(為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且函數(shù)為偶函數(shù),當時,,若有三個零點,則實數(shù)的取值集合是(

A.B.,

C.D.,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某社區(qū)組織“學習強國”的知識競賽,從參加競賽的市民中抽出40人,將其成績分成以下6組:第1,第2,第3,第4,第5,第6,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第23,4組抽取的人數(shù)依次為(

A.1,34B.2,33C.2,2,4D.1,1,6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為,為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程

(1)若曲線只有一個公共點,求的值;

(2)為曲線上的兩點,且,求的面積最大值.

查看答案和解析>>

同步練習冊答案