【題目】已知函數(shù)

(Ⅰ)若,求證:函數(shù)在(1,+∞)上是增函數(shù);

(Ⅱ)求函數(shù)[1,e]上的最小值及相應(yīng)的.

【答案】(Ⅰ)函數(shù)f(x)在(1,+∞)上是增函數(shù);(Ⅱ)見(jiàn)解析.

【解析】試題分析:)代入,求導(dǎo),通過(guò)導(dǎo)數(shù)恒為正值進(jìn)行證明;()求導(dǎo),通過(guò)討論參數(shù)的取值,研究函數(shù)的極值點(diǎn)與所給區(qū)間的關(guān)系,進(jìn)而研究函數(shù)在所給區(qū)間上的單調(diào)性和極值、最值進(jìn)行求解.

試題解析:(Ⅰ)當(dāng)a=﹣2時(shí),f(x)=x2﹣2lnx,當(dāng)x∈(1,+∞),,故函數(shù)f(x)在(1,+∞)上是增函數(shù).

(Ⅱ),當(dāng)x∈[1,e],2x2+a∈[a+2,a+2e2].

a≥﹣2,f'(x)在[1,e]上非負(fù)(僅當(dāng)a=﹣2,x=1時(shí),f'(x)=0),

故函數(shù)f(x)在[1,e]上是增函數(shù),此時(shí)[f(x)]min=f(1)=1.

若﹣2e2<a<﹣2,當(dāng)時(shí),f'(x)=0;當(dāng)時(shí),f'(x)<0,

此時(shí)f(x)是減函數(shù);當(dāng)時(shí),f'(x)>0,此時(shí)f(x)是增函數(shù).

[f(x)]min==

a≤﹣2e2,f'(x)在[1,e]上非正(僅當(dāng)a=﹣2e2,x=e時(shí),f'(x)=0),

故函數(shù)f(x)在[1,e]上是減函數(shù),此時(shí)[f(x)]min=f(e)=a+e2

綜上可知,當(dāng)a≥﹣2時(shí),f(x)的最小值為1,相應(yīng)的x值為1;

當(dāng)﹣2e2<a<﹣2時(shí),f(x)的最小值為,相應(yīng)的x值為

當(dāng)a≤﹣2e2時(shí),f(x)的最小值為a+e2,相應(yīng)的x值為e

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系 中,過(guò)橢圓 右焦點(diǎn) 的直線交橢圓兩點(diǎn) , 的中點(diǎn),且 的斜率為 .

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)過(guò)點(diǎn) 的直線 (不與坐標(biāo)軸垂直)與橢圓交于 兩點(diǎn),問(wèn):在 軸上是否存在定點(diǎn) ,使得 為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)= ,則函數(shù)y=|f(x)|﹣ 的零點(diǎn)個(gè)數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),滿足

1)求數(shù)列的通項(xiàng)公式.

2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了弘揚(yáng)民族文化,某校舉行了“我愛(ài)國(guó)學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了100名考生的成績(jī)(得分均為整數(shù),滿足100分)進(jìn)行統(tǒng)計(jì)制表,其中成績(jī)不低于80分的考生被評(píng)為優(yōu)秀生,請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計(jì)概率,回答下列問(wèn)題.

分組

頻數(shù)

頻率

5

0.05

0.20

35

25

0.25

15

0.15

合計(jì)

100

1.00

(1)求的值并估計(jì)這100名考生成績(jī)的平均分;

(2)按頻率分布表中的成績(jī)分組,采用分層抽樣抽取20人參加學(xué)校的“我愛(ài)國(guó)學(xué)”宣傳活動(dòng),求其中優(yōu)秀生的人數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn,且=9,S6=60

(I)求數(shù)列{an}的通項(xiàng)公式;

II)若數(shù)列{bn}滿足bn+1bn=n∈N+)且b1=3,求數(shù)列的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一位同學(xué)家里訂了一份報(bào)紙,送報(bào)人每天都在早上6 : 207 : 40之間將報(bào)紙送達(dá),該同學(xué)需要早上7 : 008 : 00之間出發(fā)上學(xué),則這位同學(xué)在離開(kāi)家之前能拿到報(bào)紙的概率為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,底面,的中點(diǎn),的中點(diǎn).

(1)求證:平面;

(2)求異面直線所成角的正切值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對(duì)角線的交點(diǎn),GPB的中點(diǎn).

(1)根據(jù)三視圖,畫(huà)出該幾何體的直觀圖.

(2)在直觀圖中,①證明:PD∥平面AGC;

②證明:平面PBD⊥平面AGC.

查看答案和解析>>

同步練習(xí)冊(cè)答案