如圖,已知P為△ABC所在平面內(nèi)一點,Q、R是△PAB、△PBC的重心,求證:直線QR∥平面ABC.
考點:直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:連接PQ交AB于D,連接PR交BC于E,連接DE,由已知得QR∥DE,由此能證明QR∥ABC.
解答: 證明:連接PQ交AB于D,
連接PR交BC于E,連接DE,
∵Q為△PAB重心,∴
PQ
PD
=
2
3
,
同理
PQ
PE
=
2
3
,
∴QR∥DE,
又DE?平面ABC,QR?平面ABC,
∴QR∥ABC.
點評:本題考查直線與平面平行的證明,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是( 。
A、
2
的共軛復(fù)數(shù)是
2
B、|3-i|=2
C、-1+2i的共軛復(fù)數(shù)是1-2i
D、|3-i|<|3+i|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓ρ=4sinθ的圓心到直線θ=
π
3
(θ∈R)的距離是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=PA=2,CD=4,E,F(xiàn)分別是PC,PD的中點.
(Ⅰ) 證明:EF∥平面PAB;
(Ⅱ) 求直線AC與平面ABEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知A1B1C1-ABC是正三棱柱(底面為正三角形,且側(cè)棱垂直底面),D是AC的中點.求證:AB1∥平面DBC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①命題“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
②關(guān)于x的不等式a<sin2x+
2
sin2x
恒成立,則a的取值范圍是a<3;
③對于函數(shù)f(x)=
ax
1+|x|
(a∈R且a≠0),則有當(dāng)a=1時,?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點;
1
0
1-x2
dx≤
e
1
1
x
dx}
其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
1
2
,an+1=
2an
1+an2
(n∈N*).
(1)求證:
1
2
≤an<1;
(2)設(shè)數(shù)列{an}的前n項和為Sn,求證:當(dāng)n≥2時,|Sn-(
S1
1
+
S2
2
+…+
Sn
n
)|<
n-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩函數(shù)f(x)=7x2-28x-c,g(x)=2x3+4x2-40x.
(1)對任意x∈[-3,3],都有f(x)≤g(x)成立,求實數(shù)c的取值范圍;
(2)存在x∈[-3,3],使f(x)≤g(x)成立,求實數(shù)c的取值范圍;
(3)對任意x1,x2∈[-3,3],都有f(x1)≤g(x2),求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知lgx=-2,則x=
 

查看答案和解析>>

同步練習(xí)冊答案