在某中學(xué)舉行的跳高比賽選撥賽中,甲和乙進(jìn)行了5次比賽,他們的成績用如圖所示的莖葉圖表示,則下列說法正確的是( 。
A、甲的平均成績比乙的平均成績高,甲比乙成績穩(wěn)定
B、甲的平均成績比乙的平均成績低,乙比甲成績穩(wěn)定
C、甲的平均成績與乙的平均成績一樣,但甲比乙成績穩(wěn)定
D、甲的平均成績與乙的平均成績一樣,但乙比甲成績穩(wěn)定
考點(diǎn):莖葉圖
專題:概率與統(tǒng)計(jì)
分析:分別求出甲乙的平均成績,并計(jì)算方差,從而得到答案.
解答: 解:
.
x
=
1
5
(98+99+105+115+118)=107,
.
x
=
1
5
(95+106+108+112+114)=107,
S
2
=
1
5
[(98-107)2+(99-107)2+(105-107)2+(115-107)2+(118-107)2]=66.8,
S
2
=
1
5
[(95-107)2+(106-107)2+(108-107)2+(112-107)2+(114-107)2]=44.
故選:D
點(diǎn)評:本題考查了莖葉圖問題,考查了平均數(shù),方差問題,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,假命題為(  )
A、若
a
-
b
=
0
,則
a
=
b
B、若
a
b
=0
,則
a
=
0
b
=
0
C、若k∈R,k
a
=
0
,則k=0或 
a
=
0
D、若
a
,
b
都是單位向量,則
a
b
≤1恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是一次函數(shù),已知f(8)=15,且f(2),f(5),f(4)成等比數(shù)列.
(1)求f(x)的解析式;
(2)求f(2)+f(4)+f(6)+…+f(2n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+an=1(n∈N*),等差數(shù)列{bn}的公差為正數(shù),其前n項(xiàng)和為Tn,T3=15,且b1,
1
a2
,b3成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若cn=
3
bnbn+1
,求數(shù)列{cn}的前n項(xiàng)和Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
x2
3-k
-
y2
k-1
=1表示雙曲線,則實(shí)數(shù)k的取值范圍是( 。
A、k<1B、1<k<3
C、k>3D、k<1或k>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在坐標(biāo)平面內(nèi),不等式組
y≥|x|
y≤x+2
x≤0
所表示的平面區(qū)域的面積為(  )
A、
1
2
B、1
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax2+1
bx+c
(a,c∈R,b∈N,a>0,b>0)是奇函數(shù),在區(qū)間(0,+∞)上,函數(shù)有最小值2,且f(1)<
5
2

(1)求f(x)的解析式.
(2)函數(shù)f(x)圖象上是否存在兩點(diǎn)關(guān)于點(diǎn)(1,0)對稱?若存在,求出這些點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項(xiàng)和為Sn且Sn=3an+1,求{an}通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos(
π
3
-α)=
2
3
,α∈(-π,0),則sin(
π
3
+2α)=( 。
A、
2
5
9
B、
4
5
9
C、-
2
5
9
D、-
4
5
9

查看答案和解析>>

同步練習(xí)冊答案