【題目】函數(shù)f(x)= 是定義在(﹣∞,+∞)上的奇函數(shù),且f( )=
(1)求實數(shù)a、b,并確定函數(shù)f(x)的解析式;
(2)判斷f(x)在(﹣1,1)上的單調(diào)性,并用定義證明你的結(jié)論.

【答案】
(1)解:∵f(x)是奇函數(shù),

∴f(﹣x)=﹣f(x)

=﹣ ,﹣ax+b=﹣ax﹣b,

∴b=0,(或直接利用f(0)=0,解得b=0).

∴f(x)= ,

∵f( )= ,

解得a=1,

∴f(x)=


(2)解:f(x)在(﹣1,1)上是增函數(shù).

證明如下:任取x1,x2∈(﹣1,1),且x1<x2,

f(x1)﹣f(x2)= =

∵﹣1<x1<x2<1,

∴﹣1<x1x2<1,x1﹣x20, ,

∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),

∴f(x)在(﹣1,1)上是增函數(shù)


【解析】(1)根據(jù)函數(shù)是奇函數(shù),可得f(0)=0,再根據(jù)f( )= ,列出關(guān)于a,b的方程組,求出即可得解析式;(2)用函數(shù)單調(diào)性定義證明,任取x1 , x2∈(﹣1,1),且x1<x2 , f(x1)﹣f(x2)作差與0比較,從而證明函數(shù)的單調(diào)性.
【考點精析】認真審題,首先需要了解函數(shù)單調(diào)性的判斷方法(單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較),還要掌握函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇)的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)y= 的定義域為M,那么(
A.{x|x>﹣1且x≠0}
B.{x|x>﹣1}
C.M={x|x<﹣1或x>0}
D.M={x|x<﹣1或﹣1<x<0或x>0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)當x≤0時,解不等式f(x)≥﹣1;
(2)寫出該函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)﹣m恰有3個不同零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】綜合題。
(1)3人坐在有八個座位的一排上,若每人的左右兩邊都要有空位,則不同坐法的種數(shù)為多少?
(2)有5個人并排站成一排,如果甲必須在乙的右邊,則不同的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)=|lgx|,且0<a<b<c時,有f(a)>f(c)>f(b),則(
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若上存在一點,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= 是定義在(﹣∞,+∞)上的奇函數(shù),且f( )=
(1)求實數(shù)a、b,并確定函數(shù)f(x)的解析式;
(2)判斷f(x)在(﹣1,1)上的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(  )
A.命題“若x2>1,則x>1”的否命題為“若x2>1,則
B.命題“?,x>1”的否定是“,x2>1”
C.命題“若x=y,則cosx=cosy"的逆否命題為假命題
D.命題“若x=y,則cosx=cosy"的逆命題為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)2x.

(Ⅰ)若f(x)=,求x的值;

(Ⅱ)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案