精英家教網 > 高中數學 > 題目詳情

【題目】冠狀病毒是一個大型病毒家族,已知的有中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重的疾病,新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現的冠狀病毒新毒株,某小區(qū)為進一步做好新型冠狀病毒肺炎疫情知識的教育,在小區(qū)內開展新型冠狀病毒防疫安全公益課在線學習,在此之后組織了新型冠狀病毒防疫安全知識競賽在線活動.已知進入決賽的分別是甲、乙、丙、丁四位業(yè)主,決賽后四位業(yè)主相應的名次為第1,2,3,4名,該小區(qū)為了提高業(yè)主們的參與度和重視度,邀請小區(qū)內的所有業(yè)主在比賽結束前對四位業(yè)主的名次進行預測,若預測完全正確將會獲得禮品,現用表示某業(yè)主對甲、乙、丙、丁四位業(yè)主的名次做出一種等可能的預測排列,記

1)求出的所有可能情形;

2)若會有小禮品贈送,求該業(yè)主獲得小禮品的概率,

【答案】1)見解析(2

【解析】

1)利用列舉法能求出的所有可能情況.

2)以為一個基本事件,列表求出所有可能結果,由此能求出該業(yè)主獲得小禮品的概率.

1)利用列舉法得到的所有可能情形如下:

,,,,

,,,

,,,,

,,,,

,,,

,.

種情況.

2)以(a,bc,d)為一個基本事件,如下表所示:

因為共有種情況,所以的概率為,

即該業(yè)主獲得小禮品的概率為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,其中

(1)若函數在區(qū)間上不單調,求的取值范圍;

(2)若函數在區(qū)間上有極大值,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有9位身高各異的同學拍照留念,分成前后兩排,前排4人,后排5人,要求每排同學的身高從中間到兩邊依次遞減,則不同的排隊方式有________種.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】由甲乙兩位同學組成一個小組參加年級組織的籃球投籃比賽,共進行兩輪投籃,每輪甲乙各自獨立投籃一次,并且相互不受影響,每次投中得2分,沒投中得0.已知甲同學每次投中的概率為,乙同學每次投中的概率為

1)求第一輪投籃時,甲乙兩位同學中至少有一人投中的概率;

2)甲乙兩位同學在兩輪投籃中,記總得分為隨機變量ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線Cy22x,過點Ea0)的直線lC交于不同的兩點Px1,y1),Qx2,y2),且滿足y1y2=﹣4,以Q為中點的線段的兩端點分別為MN,其中Nx軸上,MC上,則a_____|PM|的最小值為_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,,,側面為等邊三角形.

(Ⅰ)證明:

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖在四棱錐中,平面底面ABCD,底面ABCD是等腰梯形,,,,.

1)證明:.

2)求平面PCD與平面PAB夾角(銳角)的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直角中,,,、分別是上一點,且滿足平分,,以為折痕將折起,使點到達點的位置,且平面平面.

1)證明:

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C的極坐標方程是,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C經過伸縮變換得到曲線E,直線t為參數)與曲線E交于A,B兩點.

1)設曲線C上任一點為,求的最小值;

2)求出曲線E的直角坐標方程,并求出直線l被曲線E截得的弦AB長.

查看答案和解析>>

同步練習冊答案