15.已知P是拋物線y2=4x上一點(diǎn),F(xiàn)是該拋物線的焦點(diǎn),則以PF為直徑且過(guò)(0,2)的圓的標(biāo)準(zhǔn)方程為(x-2.5)2+(y-2)2=6.25.

分析 利用條件,先求出P的坐標(biāo),再求出圓的標(biāo)準(zhǔn)方程.

解答 解:設(shè)P(m,n),則$\left\{\begin{array}{l}{{n}^{2}=4m}\\{\frac{n-2}{m}•\frac{2-0}{0-1}=-1}\end{array}\right.$,解得m=n=4,
∴P(4,4),
∵F(1,0),∴PF的中點(diǎn)為(2.5,2),|PF|=5,
∴以PF為直徑且過(guò)(0,2)的圓的標(biāo)準(zhǔn)方程為(x-2.5)2+(y-2)2=6.25.
故答案為:(x-2.5)2+(y-2)2=6.25.

點(diǎn)評(píng) 本題考查拋物線的性質(zhì),考查圓的標(biāo)準(zhǔn)方程,考查學(xué)生的計(jì)算能力,確定P的坐標(biāo)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}滿足a1=m,an+1=$\left\{\begin{array}{l}{2{a}_{n},n=2k-1}\\{{a}_{n}+r,n=2k}\end{array}\right.$(k∈N*,r∈R),其前n項(xiàng)和為Sn
(1)當(dāng)m與r滿足什么關(guān)系時(shí),對(duì)任意的n∈N*,數(shù)列{an}都滿足an+2=an?
(2)對(duì)任意實(shí)數(shù)m,r,是否存在實(shí)數(shù)p與q,使得{a2n+1+p}與{a2n+q}是同一個(gè)等比數(shù)列?若存在,請(qǐng)求出p,q滿足的條件;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)m=r=1時(shí),若對(duì)任意的n∈N*,都有Sn≥λan,求實(shí)數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.求圓(x-3)2+y2=1關(guān)于點(diǎn)P(0,1)對(duì)稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè){an}是公比為q(q≠1)的無(wú)窮等比數(shù)列,若{an}中任意兩項(xiàng)之積仍是該數(shù)列中的項(xiàng),則稱{an}為“封閉等比數(shù)列”.給出以下命題:
(1)a1=3,q=2,則{an}是“封閉等比數(shù)列”;
(2)a1=$\frac{1}{2}$,q=2,則{an}是“封閉等比數(shù)列”;
(3)若{an},{bn}都是“封閉等比數(shù)列”,則{an•bn},{an+bn}也都是“封閉等比數(shù)列”;
(4)不存在{an},使{an}和{an2}都是“封閉等比數(shù)列”;
以上正確的命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知正項(xiàng)等差數(shù)列{an}滿足:Sn2=a13+a23+a33+…+an3,其中Sn是數(shù)列{an}的前n項(xiàng)和.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足:bn=$\frac{{2+{a_n}}}{{{2^{2+{a_n}}}{S_n}}}$,求數(shù)列{bn}的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知i是虛數(shù)單位,若復(fù)數(shù)z滿足$\frac{z}{2-i}$=i,則|z|(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在銳角△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若sinA=$\frac{2\sqrt{2}}{3}$,a=3,S△ABC=2$\sqrt{2}$,則b的值為( 。
A.6B.3C.2D.2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥-3}\\{y≤2}\\{x-y-1≤0}\end{array}\right.$,則$\frac{2y-2}{x-4}$的最大值$\frac{10}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠∅,則m+n的取值范圍為(  )
A.(0,4)B.[0,4)C.[0,4]D.(4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案