7.在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,若sinA=$\frac{2\sqrt{2}}{3}$,a=3,S△ABC=2$\sqrt{2}$,則b的值為( 。
A.6B.3C.2D.2或3

分析 銳角△ABC中,sinA=$\frac{2\sqrt{2}}{3}$,可得cosA=$\sqrt{1-si{n}^{2}A}$.又a=3,S△ABC=2$\sqrt{2}$,可得$\frac{1}{2}bc$sinA=2$\sqrt{2}$,32=$^{2}+{c}^{2}-2bc×\frac{1}{3}$,聯(lián)立解出即可得出.

解答 解:∵銳角△ABC中,sinA=$\frac{2\sqrt{2}}{3}$,∴cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{1}{3}$.
又a=3,S△ABC=2$\sqrt{2}$,
∴$\frac{1}{2}bc$sinA=2$\sqrt{2}$,即bc=6,
32=$^{2}+{c}^{2}-2bc×\frac{1}{3}$,可得b2+c2=13,
聯(lián)立解得b=2或3.
故選:D.

點評 本題考查了余弦定理、三角形面積計算公式、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知在Rt△ABC中,∠C=90°,根據(jù)下列條件解直角三角形:
(1)已知a=6$\sqrt{5}$,b=6$\sqrt{5}$;
(2)已知a=2,c=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義函數(shù)f(x)如下:對于實數(shù)x,如果存在整數(shù)m,使得|x-m|<$\frac{1}{2}$,則f(x)=m,則下列結(jié)論:
(1)f(x)是實數(shù)R上的遞增函數(shù);
(2)f(x)是周期為1的函數(shù);
(3)f(x)是奇函數(shù);
(4)函數(shù)f(x)的圖象與直線y=x有且僅有一個交點,
則正確的結(jié)論的序號是(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知P是拋物線y2=4x上一點,F(xiàn)是該拋物線的焦點,則以PF為直徑且過(0,2)的圓的標(biāo)準(zhǔn)方程為(x-2.5)2+(y-2)2=6.25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a,b為空間兩條不重合的直線,α,β為空間兩個不重合的平面,則以下結(jié)論正確的是( 。
A.若α⊥β,a?α,則a⊥βB.若α⊥β,a⊥β,則a∥αC.若a?α,a∥β,則α∥βD.若a?α,a⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)y=$\sqrt{1-x}$+$\sqrt{x+3}$的最大值為M,最小值為m,則$\frac{m}{M}$的值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若關(guān)于x的不等式組$\left\{\begin{array}{l}{{x}^{3}+3{x}^{2}-x-3>0}\\{{x}^{2}-2ax-1≤0}\end{array}\right.$(a>0)的整數(shù)解有且僅有一個,則a的取值范圍為( 。
A.[$\frac{3}{4}$,$\frac{4}{3}$]B.[$\frac{3}{4}$,$\frac{4}{3}$)C.($\frac{3}{4}$,$\frac{4}{3}$)D.($\frac{3}{4}$,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若實數(shù)x,y滿足關(guān)系式x+y+1=0,則式子S=$\sqrt{{x}^{2}+{y}^{2}-2x-2y+2}$的最小值為$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}前n項的和為Sn,且(2n-1)Sn+1-(2n+1)Sn=4n2-1(n∈N
(1)求a1;
(2)求Sn,an;
(3)設(shè)bn=|an-30|,求{bn}的前n項的和為Tn

查看答案和解析>>

同步練習(xí)冊答案