已知過曲線上任意一點作直線的垂線,垂足為,且.
⑴求曲線的方程;
⑵設(shè)、是曲線上兩個不同點,直線的傾斜角分別為,
當(dāng)變化且為定值時,證明直線恒過定點,
并求出該定點的坐標(biāo).
 
⑵當(dāng)時,直線恒過定點,當(dāng)時直線恒過定點.

試題分析:⑴要求曲線方程,但是不知道是哪種曲線,所以只能設(shè)點.根據(jù),轉(zhuǎn)化為求曲線方程即可;
⑵要證明直線恒過定點,必須得有直線方程,所以首先設(shè)出直線方程.又因為兩個角是直線的傾斜角,所以點也得設(shè)出來.利用韋達定理,然后討論的范圍變化,證明并得出定點坐標(biāo).
試題解析:⑴設(shè),則,由,;
;所以軌跡方程為;
⑵設(shè),由題意得(否則)且,
所以直線的斜率存在,設(shè)其方程為,
因為在拋物線上,所以,
聯(lián)立消去,得;
由韋達定理知①;
(1)當(dāng)時,即時,,所以,
,所以.由①知:,所以
因此直線的方程可表示為,即.
所以直線恒過定點
(2)當(dāng)時,由,得==
將①式代入上式整理化簡可得:,所以,
此時,直線的方程可表示為,
,所以直線恒過定點;
所以由(1)(2)知,當(dāng)時,直線恒過定點,
當(dāng)時直線恒過定點.           12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線與拋物線(常數(shù))相交于不同的兩點、,且為定值),線段的中點為,與直線平行的切線的切點為(不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點為切點).

(1)用、表示出點、點的坐標(biāo),并證明垂直于軸;
(2)求的面積,證明的面積與、無關(guān),只與有關(guān);
(3)小張所在的興趣小組完成上面兩個小題后,小張連、,再作與、平行的切線,切點分別為、,小張馬上寫出了、的面積,由此小張求出了直線與拋物線圍成的面積,你認為小張能做到嗎?請你說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線x2=4y的焦點為F,過焦點F且不平行于x軸的動直線交拋物線于A、B兩點,拋物線在A、B兩點處的切線交于點M.

(1)求證:A、M、B三點的橫坐標(biāo)成等差數(shù)列;
(2)設(shè)直線MF交該拋物線于C、D兩點,求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知拋物線過點,直線,兩點,過點且平行于軸的直線分別與直線軸相交于點,

(1)求的值;
(2)是否存在定點,當(dāng)直線過點時,△與△的面積相等?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點在原點,對稱軸為坐標(biāo)軸,焦點在直線2x-y-4=0上,求拋物線的標(biāo)準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線的焦點作直線交拋物線兩點,若A到拋物線的準線的距離為4,則          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C:x2+y2+6x+8y+21=0,拋物線y2=8x的準線為l,設(shè)拋物線上任意一點P到直線l的距離為m,則m+|PC|的最小值為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線y=k(x+2)(k>0)與拋物線C:y2=8x相交于A、B兩點,F為C的焦點,若|FA|=2|FB|,則k等于(  )
(A)    (B)     (C)    (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l過拋物線y2=4x的焦點F,交拋物線于AB兩點,且點ABy軸的距離分別為m,n,則mn+2的最小值為(  )
A.4B.6C.4 D.6

查看答案和解析>>

同步練習(xí)冊答案