【題目】已知函數(shù),則下列命題正確的是______填上你認為正確的所有命題的序號

函數(shù)的單調遞增區(qū)間是;函數(shù)的圖像關于點對稱;

函數(shù)的圖像向左平移個單位長度后,所得的圖像關于y軸對稱,m的最小值是

若實數(shù)m使得方程上恰好有三個實數(shù)解,,,

【答案】①③④

【解析】

先利用輔助角公式將函數(shù)化簡,然后再從單調區(qū)間、對稱中心、圖象平移、函數(shù)與方程四個方面逐項分析.

,令,所以,因為,所以令,則,所以單調增區(qū)間是,故正確;

因為,所以不是對稱中心,故錯誤;

的圖像向左平移個單位長度后得到,且是偶函數(shù),所以,所以,所以時,,故正確;

因為,作出上的圖象如下圖所示:

有且僅有三個交點:

所以,又因為,且關于對稱,所以,所以,故正確;

故填寫:①③④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說:“我羊所吃的禾苗只有馬的一半,”馬主人說:“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應償還多少?該問題中,1斗為10升,則馬主人應償還( )升粟?

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子里裝有大小均勻的6個小球,其中有紅色球4個,編號分別為1,2,3,4;白色球2個,編號分別為4,5,從盒子中任取3個小球(假設取到任何個小球的可能性相同).

1)求取出的3個小球中,含有編號為4的小球的概率;

2)在取出的3個小球中,小球編號的最大值設為,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】IT從業(yè)者繪制了他在26歲~35(2009年~2018)之間各年的月平均收入(單位:千元)的散點圖:

1)由散點圖知,可用回歸模型擬合的關系,試根據(jù)附注提供的有關數(shù)據(jù)建立關于的回歸方程

2)若把月收入不低于2萬元稱為“高收入者”.

試利用(1)的結果,估計他36歲時能否稱為“高收入者”?能否有95%的把握認為年齡與收入有關系?

附注:①.參考數(shù)據(jù):,,,,,其中,取,

.參考公式:回歸方程中斜率和截距的最小二乘估計分別為:,

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的焦點是,、是曲線上不同兩點,且存在實數(shù)使得,曲線在點、處的兩條切線相交于點

1)求點的軌跡方程;

2)點軸上,以為直徑的圓與的另一交點恰好是的中點,當時,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列三個命題:

①若,則的逆命題;

②若,則的逆否命題;

③若,是奇數(shù),則、中一個是奇數(shù),一個是偶數(shù).

其中真命題的個數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)當時,證明:對任意的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)的圖像關于直線對稱,且當,過點作曲線的兩條切線,若這兩條切線互相垂直,則該函數(shù)的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,己知拋物線,直線交拋物線于兩點,是拋物線外一點,連接分別交地物線于點,且.

1)若,求點的軌跡方程.

2)若,且平行x軸,求面積.

查看答案和解析>>

同步練習冊答案