17.執(zhí)行下面的程序框圖,則輸出結(jié)果S=( 。
A.$\frac{21}{16}$B.$\frac{85}{64}$C.$\frac{63}{32}$D.$\frac{127}{64}$

分析 模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S=$\frac{1}{{2}^{0}}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{4}}$=$\frac{21}{16}$的值,計(jì)算即可得解.

解答 解:根據(jù)流程圖所示的順序,可得該程序的作用是計(jì)算并輸出S=$\frac{1}{{2}^{0}}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{4}}$=$\frac{21}{16}$的值.
則輸出結(jié)果S=$\frac{21}{16}$.
故選:A.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過程,以便得出正確的結(jié)論,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)由如表給出,則f(f(3))=1.
x-113
f(x)10-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知平面直角坐標(biāo)系內(nèi)的兩個(gè)向量,$\overrightarrow{a}$=(1,2),$\overrightarrow$=(m,3m-2),且平面內(nèi)的任一向量$\overrightarrow{c}$都可以唯一的表示成$\overrightarrow{c}$=λ$\overrightarrow{a}$+$μ\overrightarrow$(λ,μ為實(shí)數(shù)),則m的取值范圍是(-∞,2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出下列說法:
①不等于2的所有偶數(shù)可以組成一個(gè)集合;
②高一年級(jí)的所有高個(gè)子同學(xué)可以組成一個(gè)集合;
③{1,2,3,}與{2,3,1}是不同的集合;
④2016年里約奧約會(huì)比賽項(xiàng)目.
其中正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),與雙曲線的漸進(jìn)線交于C,D兩點(diǎn),若|AB|≥$\frac{3}{5}$|CD|,則雙曲線離心率的取值范圍為(  )
A.[$\frac{5}{3}$,+∞)B.[$\frac{5}{4}$,+∞)C.(1,$\frac{5}{3}$]D.(1,$\frac{5}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=x2-2x(x∈[2,4])的增區(qū)間為[2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.不等式-x2+3x-2>0的解集是(  )
A.(-∞,-2)∪(-1,+∞)B.(-∞,1)∪(2,+∞)C.(1,2)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列命題中正確的有(2)(3)(5).
(1)常數(shù)數(shù)列既是等差數(shù)列也是等比數(shù)列;
(2)在△ABC中,若sin2A+sin2B=sin2C,則△ABC為直角三角形;
(3)若A,B為銳角三角形的兩個(gè)內(nèi)角,則tanAtanB>1;
(4)若Sn為數(shù)列{an}的前n項(xiàng)和,則此數(shù)列的通項(xiàng)an=Sn-Sn-1(n>1).
(5)等比數(shù)列{an}的前n項(xiàng)和為Sn,S2=3,S6=63,則S4=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知兩動(dòng)圓F1:(x+$\sqrt{3}$)2+y2=r2和F2:(x-$\sqrt{3}$)2+y2=(4-r)2(0<r<4),把它們的公共點(diǎn)的軌跡記為曲線C,若曲線C與y軸的正半軸的交點(diǎn)為M,且曲線C上的相異兩點(diǎn)A、B滿足:$\overrightarrow{MA}$•$\overrightarrow{MB}$=0.
(1)求曲線C的方程;
(2)證明直線AB恒經(jīng)過一定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)求△ABM面積S的最大值.

查看答案和解析>>

同步練習(xí)冊答案