4.已知數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}2{a_n}(0≤{a_n}<\frac{1}{2})\\ 2{a_n}-1(\frac{1}{2}≤{a_n}<1)\end{array}\right.$,若a1=$\frac{6}{7}$,則a2017=(  )
A.$\frac{1}{7}$B.$\frac{3}{7}$C.$\frac{5}{7}$D.$\frac{6}{7}$

分析 數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}2{a_n}(0≤{a_n}<\frac{1}{2})\\ 2{a_n}-1(\frac{1}{2}≤{a_n}<1)\end{array}\right.$,a1=$\frac{6}{7}$,可得an+3=an.即可得出.

解答 解:∵數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}2{a_n}(0≤{a_n}<\frac{1}{2})\\ 2{a_n}-1(\frac{1}{2}≤{a_n}<1)\end{array}\right.$,a1=$\frac{6}{7}$,
∴a2=2a1-1=$\frac{5}{7}$,a3=2a2-1=$\frac{3}{7}$,a4=2a3=$\frac{6}{7}$,…,
∴an+3=an
則a2017=a672×3+1=${a}_{1}=\frac{6}{7}$.
故選:D.

點(diǎn)評(píng) 本題考查了數(shù)列的遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{dn}的前n項(xiàng)和${S_n}={n^2}+n$,且d2,d4為等比數(shù)列數(shù)列{an}的第2、3項(xiàng).
(1)求{an}的通項(xiàng)方式;
(2)設(shè)${b_n}=\frac{n}{a_n}$,求證:b1+b2+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)公比不為1的等比數(shù)列{an}滿足${a_1}{a_2}{a_3}=-\frac{1}{8}$,且a2,a4,a3成等差數(shù)列,則數(shù)列{an}的前4項(xiàng)和為$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=sin(2x+φ)的圖象向右平移$\frac{π}{3}$個(gè)單位,與函數(shù)y=sin2x的圖象重合,φ∈(-π,π),則φ=( 。
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.-$\frac{5π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知全集U=R,集合A={x|-3<x≤2},B={x|x>1}.
(1)求A∩B,A∪(∁RB);
(2)已知集合C={x|2x+m<1},若A∩B⊆C,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$\frac{x^2}{4}$+y2=1,直線m與橢圓交于A、B兩點(diǎn),線段AB的中點(diǎn)為M(1,$\frac{1}{2}$),求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.六個(gè)學(xué)習(xí)小組依次編號(hào)為1、2、3、4、5、6,每組3人,現(xiàn)需從中任選3人組成一個(gè)新的學(xué)習(xí)小組,則3人來自不同學(xué)習(xí)小組的概率為( 。
A.$\frac{5}{204}$B.$\frac{45}{68}$C.$\frac{15}{68}$D.$\frac{5}{68}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.計(jì)算:(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-log327=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知全集N=Z,集合A={-1,1,2,3,4},B={-2,-1,0,1,2},則(∁UA)∩B=( 。
A.{3,4}B.{-2,3}C.{-2,4}D.{-2,0}

查看答案和解析>>

同步練習(xí)冊(cè)答案