6.在$\frac{8}{3}$和$\frac{27}{2}$之間插入3個(gè)數(shù),使這五個(gè)數(shù)成等比數(shù)列,求這三數(shù)?

分析 由題意求出所得數(shù)列的公比,然后分類求得所插入的三個(gè)數(shù).

解答 解:設(shè)所插入的三個(gè)數(shù)分別為a,b,c,
則$\frac{8}{3}$和$\frac{27}{2}$分別是所得數(shù)列的首項(xiàng)和第5項(xiàng),
設(shè)公比為q,則$\frac{27}{2}=\frac{8}{3}{q}^{4}$,解得q=$±\frac{3}{2}$.
當(dāng)q=$\frac{3}{2}$時(shí),三個(gè)數(shù)分別為4,6,9;
當(dāng)q=$-\frac{3}{2}$時(shí),三個(gè)數(shù)分別為-4,6,-9.

點(diǎn)評 本題考查等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=$\frac{{{x^2}sinx}}{{{{1.5}^{|x|}}}}$的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.2016°角所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如果數(shù)列{an}、{bn}是項(xiàng)數(shù)相同的兩個(gè)等差數(shù)列,p,q是常數(shù),那么數(shù)列{pan+qbn}是等差數(shù)列嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知單位向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$⊥$\overrightarrow$,且正實(shí)數(shù)λ,μ滿足($\overrightarrow{a}$+$\overrightarrow$-$λ\overrightarrow{a}$)•($\overrightarrow{a}$+$\overrightarrow$-$μ\overrightarrow$)=0,則|$λ\overrightarrow{a}$-$μ\overrightarrow$|的取值范圍是[$\sqrt{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知等比數(shù)列{an}的首項(xiàng)a1=1,且a2、a4、a3成等差,則數(shù)列{an}的公比q=1或-$\frac{1}{2}$,數(shù)列{an}的前4項(xiàng)和S4=4或$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如果兩條直線l1,l2中的一條斜率不存在,另一個(gè)斜率是零,那么l1與l2的位置關(guān)系是垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線關(guān)于x軸對稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn)O,若點(diǎn)M(-2,y)在拋物線上,且點(diǎn)M到該拋物線焦點(diǎn)的距離為3,
(1)求拋物線的標(biāo)準(zhǔn)方程及點(diǎn)M的坐標(biāo).
(2)過點(diǎn)C(-3,$\frac{1}{2}$)做直線l,使得直線l與拋物線相交于A,B兩點(diǎn).恰好C為弦AB的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow a$=(m,0}),向量$\overrightarrow b,\overrightarrow c$滿足$\overrightarrow a$⊥$\overrightarrow{b$,$\overrightarrow c$-$\overrightarrow a$=2$\overrightarrow b$,且|$\overrightarrow c$|=$\sqrt{10}$,若$\overrightarrow c$與$\overrightarrow a$+$\overrightarrow b$夾角的余弦值為$\frac{{3\sqrt{10}}}{10}$,則|$\overrightarrow b$|=(  )
A.$\sqrt{2}$B.$\frac{5}{4}$C.$\frac{5}{4}$或2D.$\sqrt{2}$或$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案