9.各項(xiàng)均為正數(shù)的數(shù)列{an}中,Sn是數(shù)列{an}的前n項(xiàng)和,對(duì)任意n∈N*,有$2{S_n}=a_n^2+{a_n}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}是首項(xiàng)和公比為2的等比數(shù)列,求數(shù)列{an•bn}的前n項(xiàng)和Tn

分析 (1)由$2{S_n}=a_n^2+{a_n}$,得:$2{S_{n+1}}=a_{_{n+1}}^2+{a_{n+1}}$,從而得到an+1-an=1,再求出a1=1,由此能求出an=n.
(2)求出${b_n}={2^n}$,從而anbn=n•2n,由此利用錯(cuò)位相減法能求出數(shù)列{an•bn}的前n項(xiàng)和.

解答 解:(1)由$2{S_n}=a_n^2+{a_n}$,①
得:$2{S}_{n+1}={{a}_{n+1}}^{2}+{{a}_{n+1}}^{\;}$,②
②-①,得:$2{a}_{n+1}={{a}_{n+1}}^{2}-{{a}_{n}}^{2}+{a}_{n+1}-{a}_{n}$,
∴(an+1+an)(an+1-an-1)=0,
∵數(shù)列{an}中各項(xiàng)均為正數(shù),∴an+1-an=1,
n=1時(shí),$2{a}_{1}={{a}_{1}}^{2}+{a}_{1}$,解得a1=1,
∴數(shù)列{an]是首項(xiàng)為1,公差為1的等差數(shù)列,
∴an=n.
(2)∵數(shù)列{bn}是首項(xiàng)和公比為2的等比數(shù)列,∴${b_n}={2^n}$,
∴anbn=n•2n,
∴數(shù)列{an•bn}的前n項(xiàng)和:
${T_n}=1×2+2×{2^2}+3×{2^3}+…+n•{2^n}$,
$2{T_n}={2^2}+2×{2^3}+3×{2^4}+…+n×{2^{n+1}}$,
∴$-{T_n}=2+{2^2}+{2^3}+…+{2^n}-n•{2^{n+1}}=\frac{{2(1-{2^n})}}{1-2}-n×{2^{n+1}}=-(n-1)•{2^{n+1}}-2$
∴${T_n}=(n-1)•{2^{n+1}}+2$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如果某個(gè)點(diǎn)是一個(gè)指數(shù)函數(shù)和一個(gè)對(duì)數(shù)函數(shù)的圖象的交點(diǎn),那么稱(chēng)這個(gè)點(diǎn)為“好點(diǎn)”,下列四個(gè)點(diǎn)P1(2,$\frac{1}{4}$),P2(4,1),P3(3,3),P4(1,5)中,是“好點(diǎn)”的為(  )
A.P1、P3B.P1、P2C.P3、P4D.P1、P2、P4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若等邊△ABC的邊長(zhǎng)為1,則△ABC的平面直觀圖△A′B′C′的面積為(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{8}$D.$\frac{\sqrt{6}}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4t+5}\\{y=3t-1}\end{array}\right.$(t為參數(shù)),在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系,圓N的方程為ρ2-6ρsinθ=-8.
(1)求圓N的直角坐標(biāo)方程;
(2)判斷直線l與圓N的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,是某多面體的三視圖,則該多面體的體積為( 。
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\frac{16}{3}$D.$\frac{8\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列說(shuō)法正確的是( 。
A.一條直線和x軸的正方向所成的角叫該直線的傾斜角
B.直線的傾斜角α的取值范圍是:0°≤α≤180°
C.任何一條直線都有斜率
D.任何一條直線都有傾斜角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若對(duì)任意的正整數(shù)n,總存在正整數(shù)m,使得數(shù)列{an}的前n項(xiàng)和Sn=am,則稱(chēng){an}是“回歸數(shù)列”.
(Ⅰ)①前n項(xiàng)和為${S_n}={2^n}$的數(shù)列{an}是否是“回歸數(shù)列”?并請(qǐng)說(shuō)明理由;
②通項(xiàng)公式為bn=2n的數(shù)列{bn}是否是“回歸數(shù)列”?并請(qǐng)說(shuō)明理由;
(Ⅱ)設(shè){an}是等差數(shù)列,首項(xiàng)a1=1,公差d<0,若{an}是“回歸數(shù)列”,求d的值;
(Ⅲ)是否對(duì)任意的等差數(shù)列{an},總存在兩個(gè)“回歸數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立,請(qǐng)給出你的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.化簡(jiǎn)cos15°cos45°-cos75°sin45°的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{-\frac{1}{2}x+\frac{1}{4},x∈[0,\frac{1}{2}]}\\{\frac{x}{x+2},x∈(\frac{1}{2},1]}\end{array}}$,g(x)=acos$\frac{πx}{2}$+5-2a(a>0)若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是[$\frac{7}{3}$,5].

查看答案和解析>>

同步練習(xí)冊(cè)答案