13.已知點(diǎn)M是圓C:x2+y2=4上一動(dòng)點(diǎn),點(diǎn)D是M在x軸上的投影,P為線段MD上一點(diǎn),且與點(diǎn)Q關(guān)于原點(diǎn)O對(duì)稱,滿足$\overrightarrow{QP}$=$\overrightarrow{OM}$+$\overrightarrow{OD}$.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)過(guò)點(diǎn)P做E的切線l與圓C相交于A,B兩點(diǎn),當(dāng)△QAB面積的最大值時(shí),求l的方程.

分析 (1)分別設(shè)出P、M的坐標(biāo),由已知把M的坐標(biāo)用P得坐標(biāo)表示,再把M的坐標(biāo)代入圓的方程得答案;
(2)設(shè)出直線l的方程,聯(lián)立直線方程和橢圓方程,由判別式等于0得到m2=4k2+1,由點(diǎn)到直線的距離公式求得原點(diǎn)O到直線l的距離d,寫出△QAB面積,利用基本不等式求得最值,并得到△QAB面積取最大值時(shí)的d值,可得m2=2k2+2.與m2=4k2+1聯(lián)立求得k,m的值,則直線方程可求.

解答 解:(1)設(shè)P(x,y),M(x0,y0),則D(x0,0),
∵P與點(diǎn)Q關(guān)于原點(diǎn)O對(duì)稱,
∴$\overrightarrow{QP}=2\overrightarrow{OP}$,從而$2\overrightarrow{OP}=\overrightarrow{OM}+\overrightarrow{OD}$,即2(x,y)=(x0,y0)+(x0,0)=(2x0,y0).
∴$\left\{\begin{array}{l}{x={x}_{0}}\\{2y={y}_{0}}\end{array}\right.$,代入${{x}_{0}}^{2}+{{y}_{0}}^{2}=4$,得x2+4y2=4.
即$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)當(dāng)直線l的斜率不存在時(shí),不合題意,故設(shè)l:y=kx+m.
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,得(1+4k2)x2+8kmx+4m2-4=0.
∵l與橢圓相切,
∴△=16(4k2+1-m2)=0,得m2=4k2+1,①
原點(diǎn)O到直線l的距離d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$,則$|AB|=2\sqrt{4-fjnbblz^{2}}$,
∴△QAB面積S=$\frac{1}{2}|AB|•2d=2d\sqrt{4-f95v3nx^{2}}=2\sqrt{hxnnddp^{2}}•\sqrt{4-txj5zpz^{2}}≤hvp5jnn^{2}+4-t9h7bn3^{2}=4$.
當(dāng)且僅當(dāng)d2=4-d2,即d=$\sqrt{2}$時(shí),△QAB面積有最大值4.
此時(shí)$d=\frac{|m|}{\sqrt{1+{k}^{2}}}=\sqrt{2}$.即m2=2k2+2.②
聯(lián)立①②解得$k=±\frac{\sqrt{2}}{2},m=±\sqrt{3}$.
∴直線l的方程為:$y=\frac{\sqrt{2}}{2}x+\sqrt{3}$或$y=\frac{\sqrt{2}}{2}x-\sqrt{3}$或$y=-\frac{\sqrt{2}}{2}x+\sqrt{3}$或$y=-\frac{\sqrt{2}}{2}x-\sqrt{3}$.

點(diǎn)評(píng) 本題考查橢圓方程的求法,訓(xùn)練了利用代入法求切線方程,考查直線與圓錐曲線位置關(guān)系的應(yīng)用,考查利用基本不等式求最值,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.i是虛數(shù)單位,復(fù)數(shù)z滿足(z-2i)(2-i)=5,則z=2+3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.一個(gè)空間幾何體的三視圖如圖所示,那么這個(gè)空間幾何體是( 。
A.B.圓錐C.正方體D.圓柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為4,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過(guò)點(diǎn)A、P、Q的平面截正方體所得的截面即為S.
①當(dāng)CQ=2時(shí),被S截得的較小幾何體為棱臺(tái);
②當(dāng)3<CQ<4時(shí),S為五邊形;
③當(dāng)CQ=3時(shí),S與C1D1的交點(diǎn)R滿足D1R=1;
④當(dāng)CQ=4時(shí),S截正方體兩部分的體積之比為1:1.
則以上命題正確的是①②④  (寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某幾何體的三視圖如圖所示,記A為此幾何體所有棱的長(zhǎng)度的集合,則(  )
A.$\sqrt{5}∈A$B.$\sqrt{11}∈A$C.$\sqrt{7}∈A$D.4∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=|x|,g(x)=-|x-4|+m.
(1)解關(guān)于x的不等式g[f(x)]+3-m>0;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(2x)圖象的上方,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,且A(a,0)、B(0,b)滿足條件|AB|=$\frac{{\sqrt{2}}}{2}$|F1F2|.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若坐標(biāo)原點(diǎn)O到直線AB的距離為$\frac{{3\sqrt{3}}}{2}$,求橢圓C的方程;
(Ⅲ)在(Ⅱ)的條件下,過(guò)點(diǎn)P(-2,1)的直線l與橢圓C交于M、N兩點(diǎn),且點(diǎn)P恰為線段MN的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.定義在R上的函數(shù)f(x)滿足f(x+2)=f(x)-2,當(dāng)x∈(0,2]時(shí),f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-6,x∈(0,1]}\\{-{2}^{x-1}-5,x∈(1,2]}\end{array}\right.$,若x∈(-6,-4]時(shí),關(guān)于x的方程af(x)-a2+2=0(a>0)有解,則實(shí)數(shù)a的取值范圍是0<a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),點(diǎn)M是圓x2+y2=4上的動(dòng)點(diǎn),動(dòng)點(diǎn)G滿足$\overrightarrow{{F}_{2}M}$=$\overrightarrow{MG}$,過(guò)點(diǎn)M作直線l⊥F2G并交直線F1G于點(diǎn)N.
(1)求點(diǎn)N的軌跡方程E;
(2)設(shè)P是(1)中軌跡E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A,關(guān)于x軸的對(duì)稱點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案