分析 (Ⅰ)由題意可得|x-1|+|x-2|小于或等于$\frac{|a+b|+|a-b|}{|a|}$的最小值,而$\frac{|a+b|+|a-b|}{|a|}$的最小值等于2,故x的范圍即為不等式|x-1|+|x-2|≤2的解,根據(jù)數(shù)軸上的$\frac{1}{2}$、$\frac{5}{2}$對(duì)應(yīng)點(diǎn)到1和2對(duì)應(yīng)點(diǎn)的距離之和等于2,可得不等式的解集.
(Ⅱ)$\frac{1}{3}$×($\sqrt{3x+1}$+$\sqrt{3y+1}$+$\sqrt{3z+1}$)≤$\sqrt{\frac{3x+1+3y+1+3z+1}{3}}$=$\sqrt{2}$,即可得出結(jié)論.
解答 解:(Ⅰ)由題知,|x-1|+|x-2|≤$\frac{|a+b|+|a-b|}{|a|}$恒成立,
故|x-1|+|x-2|小于或等于$\frac{|a+b|+|a-b|}{|a|}$的最小值.
∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當(dāng)且僅當(dāng) (a+b)(a-b)≥0 時(shí)取等號(hào),
∴$\frac{|a+b|+|a-b|}{|a|}$的最小值等于2,∴x的范圍即為不等式|x-1|+|x-2|≤2的解.
由于|x-1|+|x-2|表示數(shù)軸上的x對(duì)應(yīng)點(diǎn)到1和2對(duì)應(yīng)點(diǎn)的距離之和,
又由于數(shù)軸上的$\frac{1}{2}$、$\frac{5}{2}$對(duì)應(yīng)點(diǎn)到1和2對(duì)應(yīng)點(diǎn)的距離之和等于2,
故不等式的解集為[$\frac{1}{2}$,$\frac{5}{2}$].
(Ⅱ)$\frac{1}{3}$×($\sqrt{3x+1}$+$\sqrt{3y+1}$+$\sqrt{3z+1}$)≤$\sqrt{\frac{3x+1+3y+1+3z+1}{3}}$=$\sqrt{2}$.
∴$\sqrt{3x+1}$+$\sqrt{3y+1}$+$\sqrt{3z+1}$≤3$\sqrt{2}$≠5,所以不存在這樣的x,y,z滿(mǎn)足條件.
點(diǎn)評(píng) 本題考查絕對(duì)值的意義,絕對(duì)值不等式的解法,考查基本不等式的運(yùn)用,判斷|x-1|+|x-2|表示數(shù)軸上的x對(duì)應(yīng)點(diǎn)到1和2對(duì)應(yīng)點(diǎn)的距離之和,是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{11}{12}$ | B. | $\frac{3}{4}$ | C. | $\frac{13}{16}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com