11.如圖,在圓O中,相交于點E的兩弦AB,CD的中點分別為M,N.
(1)證明:O,M,E,N四點共圓;
(2)若AB=CD,證明:EO⊥BD.

分析 (1)由題意可得OM⊥AB,ON⊥CD,可得∠OME+∠ONE=180°,從而得到O,M,E,N四點共圓.
(2)利用條件求得BE=DE,設BD的中點為O1,則EO1⊥BD,OO1⊥BD,證得E,O1,O三點共線,可得EO⊥BD.

解答 解:(1)∵M為AB的中點,∴OM⊥AB;∵N為CD的中點,∴ON⊥CD,
在四邊形OMEN中,∴∠OME+∠ONE=180°,∴O,M,E,N四點共圓.
(2)因為AB=CD,所以$\widehat{AB}=\widehat{CD}$,所以$\widehat{BC}=\widehat{AD}$,∴∠ABD=∠BDC,所以BE=DE,
連接OB,OD,設BD的中點為O1,則EO1⊥BD,OO1⊥BD,
所以E,O1,O三點共線,所以EO⊥BD.

點評 本題主要考查與圓有關的比例線段,四點共圓的條件,等腰三角形的性質,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.在正方體ABCD-A′B′C′D′,E為A′D′的中點,則異面直線EC與BC′所成角的余弦值為$\frac{\sqrt{2}}{6}$,二面角A′-BC′-D的平面角的正切值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.廣播電臺為了了解某地區(qū)的聽眾對某個戲曲節(jié)目的收聽情況,隨機抽取了100名聽眾進行調查,下面是根據(jù)調查結果繪制的聽眾日均收聽該節(jié)目的頻率分布直方圖,將日均收聽該節(jié)目時間不低于40分鐘的聽眾成為“戲迷”
(Ⅰ)根據(jù)已知條件完成2×2列聯(lián)表,并判斷“戲迷”與性別是否有關?
“戲迷”非戲迷總計
1055
總計
附:K2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$,
 P(K2≥k) 0.05 0.01
 k 3.841 6.635
(Ⅱ)將上述調查所得到的頻率當作概率.現(xiàn)在從該地區(qū)大量的聽眾中,采用隨機抽樣的方法每次抽取1名聽眾,抽取3次,記被抽取的3名聽眾中“戲迷”的人數(shù)為X,若每次抽取的結果相互獨立,求X的分布列,數(shù)學期望及方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.一個四棱錐P-ABCD的8條棱中,成異面直線有( 。
A.8對B.10對C.12對D.16對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知集合A={1,2,3,4,5,6,7}.
(1)滿足{1,2,3}⊆B⊆A的集合B的個數(shù)是16;
(2)若C是A的含有4個元素的子集,且滿足對任意的x,x∈C,都滿足x+1∈C或x-1∈C,則集合C的個數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若過點(-$\sqrt{5}$,0)的直線L與曲線y=$\sqrt{1-{x}^{2}}$有公共點,則直線L的斜率的取值范圍為( 。
A.[-$\frac{1}{2}$,$\frac{1}{2}$]B.[-$\frac{1}{2}$,0]C.[0,$\sqrt{6}$]D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=ln(1+x)-x+x2,求曲線y=f(x)在點(1,f(1))處的切線方程為3x-2y+2ln2-3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如圖所示,⊙O的兩條切線PA和PB相交于點P,與⊙O相切于A,B兩點,C是⊙O上的一點,若∠P=70°,則∠ACB=55°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.正三棱柱ABC-A1B1C1中,AB=6,AA1=4,D為BC的中點.
(1)求證:A1B∥平面ADC1;
(2)在線段BB1上是否存在點P,使得CP⊥平面ADC1.若存在,請確定點P的位置;若不存在,請說明理由.
(3)求點C到平面ADC1的距離.

查看答案和解析>>

同步練習冊答案