【題目】柴靜《穹頂之下》的播出,讓大家對(duì)霧霾天氣的危害有了更進(jìn)一步的認(rèn)識(shí),對(duì)于霧霾天氣的研究也漸漸活躍起來(lái),某研究機(jī)構(gòu)對(duì)春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進(jìn)行統(tǒng)計(jì)分析,得出下表數(shù)據(jù):
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)燃放煙花爆竹的天數(shù)為的霧霾天數(shù).
【答案】(1) 散點(diǎn)圖見(jiàn)解析.為正相關(guān)
(2) .
(3)7.
【解析】
分析:(1)根據(jù)表中數(shù)據(jù),畫出散點(diǎn)圖即可;
(2)根據(jù)公式,計(jì)算線性回歸方程的系數(shù)即可;
(3)由線性回歸方程預(yù)測(cè)x=9時(shí),y的平均值為7
詳解:
(1)散點(diǎn)圖如圖所示.為正相關(guān).
xiyi=4×2+5×3+7×5+8×6=106.==6,==4,
x=42+52+72+82=154,
則===1,=-=4-6=-2,
故線性回歸方程為=x+=x-2.
(3)由線性回歸方程可以預(yù)測(cè),燃放煙花爆竹的天數(shù)為9的霧霾天數(shù)為7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣DEF中,側(cè)面ABED是邊長(zhǎng)為2的菱形,且∠ABE= ,BC= ,四棱錐F﹣ABED的體積為2,點(diǎn)F在平面ABED內(nèi)的正投影為G,且G在AE上,點(diǎn)M是在線段CF上,且CM= CF.
(Ⅰ)證明:直線GM∥平面DEF;
(Ⅱ)求二面角M﹣AB﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1 , B1C1上的點(diǎn),且滿足A1E=EC1 , B1F=3FC1 .
(1)求證:平面AEF⊥平面BB1C1C;
(2)設(shè)直三棱柱ABC﹣A1B1C1的棱長(zhǎng)均相等,求二面角C1﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足 ,則使不等式a2016>2017成立的所有正整數(shù)a1的集合為( )
A.{a1|a1≥2017,a1∈N+}
B.{a1|a1≥2016,a1∈N+}
C.{a1|a1≥2015,a1∈N+}
D.{a1|a1≥2014,a1∈N+}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的是自動(dòng)通風(fēng)設(shè)施該設(shè)施的下部ABCD是等腰梯形,其中米,高米,米上部CmD是個(gè)半圓,固定點(diǎn)E為CD的中點(diǎn)是由電腦控制其形狀變化的三角通風(fēng)窗陰影部分均不通風(fēng),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和CD平行的伸縮橫桿.
設(shè)MN與AB之間的距離為x米,試將三角通風(fēng)窗的通風(fēng)面積平方米表示成關(guān)于x的函數(shù);
當(dāng)MN與AB之間的距離為多少米時(shí),三角通風(fēng)窗的通風(fēng)面積最大?求出這個(gè)最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的一個(gè)焦點(diǎn)與拋物線 的焦點(diǎn)相同,F(xiàn)1 , F2為橢圓的左、右焦點(diǎn).M為橢圓上任意一點(diǎn),△MF1F2面積的最大值為4 .
(1)求橢圓C的方程;
(2)設(shè)橢圓C上的任意一點(diǎn)N(x0 , y0),從原點(diǎn)O向圓N:(x﹣x0)2+(y﹣y0)2=3作兩條切線,分別交橢圓于A,B兩點(diǎn).試探究|OA|2+|OB|2是否為定值,若是,求出其值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱柱中,側(cè)棱與底面垂直,,,分別是的中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)棱底面,且側(cè)棱的長(zhǎng)是,點(diǎn)分別是的中點(diǎn).
(Ⅰ)證明: 平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正四面體ABCD中,M是棱AD的中點(diǎn),O是點(diǎn)A在底面BCD內(nèi)的射影,則異面直線BM與AO所成角的余弦值為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com