(x2-1)(
1
x
-2)5的展開(kāi)式的常數(shù)項(xiàng)為
 
考點(diǎn):二項(xiàng)式定理的應(yīng)用
專題:二項(xiàng)式定理
分析:把(
1
x
-2)5按照二項(xiàng)式定理展開(kāi),可得(x2-1)(
1
x
-2)5的展開(kāi)式的常數(shù)項(xiàng).
解答: 解:由于(x2-1)(
1
x
-2)5 =(x2-1)(
C
0
5
(
1
x
)
5
-2
C
1
5
(
1
x
)
4
+4
C
2
5
(
1
x
)
3
-8
C
3
5
(
1
x
)
2
+16
C
4
5
1
x
-32 ),
故展開(kāi)式的常數(shù)項(xiàng)為-8
C
3
5
+32=-48,
故答案為:-48.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖給出的是計(jì)算1+
1
3
+
1
5
+…+
1
39
的值的一個(gè)程序框圖,則圖中執(zhí)行框中的①處和判斷框中的②處應(yīng)填的語(yǔ)句分別是( 。
A、n=n+2,i>21?
B、n=n+2,i>20?
C、n=n+1,i≥20?
D、n=n+1,i>21?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x
x2+4
,x∈(0,2),則函數(shù)f(x)的值域?yàn)?div id="mnwzuwp" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6
3+t
=
1
t+1
+
2m-1
2m-1+t
,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程16x+(3+a)•4x+1=0有正數(shù)解,則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:“a+2b=0”是“直線ax+2y+3=0和直線x+by+2=0互相垂直”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):sin2α+sin2β-sin2αcos2β-cos2αsin2β=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=
7

(1)求
AD
AC
;
(2)若
AD
AC
=0,
BA
BC
=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3x2+a(a∈R)
①若f(x)的圖象在(1,f(1))處的切線經(jīng)過(guò)點(diǎn)(0,2),則a=
 
;
②若對(duì)任意x1∈[0,2],都存在x2∈[2,3]使得f(x1)+f(x2)≤2,則實(shí)數(shù)a的范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案