【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場(chǎng)舞的需要,現(xiàn)規(guī)劃在草坪上建一個(gè)廣場(chǎng),廣場(chǎng)形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點(diǎn)在⊙O上,A,B,C,D恰是一個(gè)正方形的四個(gè)頂點(diǎn).根據(jù)規(guī)劃要求,在A,B,C,D四點(diǎn)處安裝四盞照明設(shè)備,從圓心O點(diǎn)出發(fā),在地下鋪設(shè)4條到A,B,C,D四點(diǎn)線路OA,OB,OC,OD.
(1)若正方形邊長(zhǎng)為10米,求廣場(chǎng)的面積;
(2)求鋪設(shè)的4條線路OA,OB,OC,OD總長(zhǎng)度的最小值.
【答案】(1)100(平方米)(2)(米)
【解析】
(1)連接AB,廣場(chǎng)面積等于正方形面積加上弓形面積,計(jì)算得到答案.
(2)過(guò)O作OK⊥CD,垂足為K,過(guò)O作OH⊥AD(或其延長(zhǎng)線),垂足為H,設(shè)∠OAD=θ(0<θ),OD,計(jì)算得到答案.
(1)連接AB,∵AB=10,∴正方形ABCD的面積為100,
又OA=OB=10,∴△AOB為正三角形,則,
而圓的面積為100π,∴扇形AOB的面積為,
又三角形AOB的面積為.∴弓形面積為,
則廣場(chǎng)面積為100(平方米);
(2)過(guò)O作OK⊥CD,垂足為K,過(guò)O作OH⊥AD(或其延長(zhǎng)線),垂足為H,
設(shè)∠OAD=θ(0<θ),則OH=10sinθ,AH=10cosθ,
∴DH=|AD﹣AH|=|2OH﹣AH|=|20sinθ﹣10cosθ|,
∴OD.
∴當(dāng)θ時(shí),.
∴4條線路OA,OB,OC,OD總長(zhǎng)度的最小值為(米).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,平面AEFC⊥平面ABCD,EF∥AC,AE=AB,AC=2EF.
(1)求證:平面BED⊥平面AEFC;
(2)若四邊形AEFC為直角梯形,且EA⊥AC,求二面角B-FC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.
(1)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長(zhǎng)度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求曲線在處的切線方程;
(Ⅱ)若,求證:;
(Ⅲ)當(dāng)時(shí),若關(guān)于的不等式的解集為,且,,求的取值范圍(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;
(Ⅱ)已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)定義:對(duì)于函數(shù),若存在,使成立,則稱為函數(shù)的不動(dòng)點(diǎn).如果函數(shù)存在不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是菱形,,平面平面,是等邊三角形.
(1)求證:;
(2)若的面積為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若,求直線與曲線的交點(diǎn)的直角坐標(biāo);
(2)若點(diǎn)在曲線上,且到直線距離的最大值為,求直線的斜率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com