【題目】已知函數(shù).

(Ⅰ)若,求曲線處的切線方程;

(Ⅱ)若,求證:

(Ⅲ)當時,若關于的不等式的解集為,且,,求的取值范圍(用表示).

【答案】(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)當時,的取值范圍是,當時,的取值范圍是.

【解析】

(Ⅰ)求導求斜率,求函數(shù)值,利用點斜式求出切線方程;

(Ⅱ)當時,,設,求導得函數(shù)的單調(diào)性與最值,得,即,分析整理即可得出證明;

(Ⅲ)由題意,上有兩個不相等的實數(shù)根,令;分類討論得函數(shù)的單調(diào)性,進而得出結論.

(Ⅰ)解:,

時,,,

所以曲線在點處的切線方程為,即;

(Ⅱ)證明:當時,,設,所以,

變化情況如下:

0

0

遞減

0

遞增

由此可知對于,,即,

因此,整理得,即;

(Ⅲ)由題意可知,即方程上有兩個不相等的實數(shù)根,,

.;

時,在.所以上的增函數(shù),

所以方程上不可能有兩個不相等的實數(shù)根;

時,在,在,

所以上是增函數(shù),在上是減函數(shù),

所以

又因為,當時,,

(ⅰ)當時,所以要使方程有兩個不相等的實數(shù)根,則的取值范圍是

(ⅱ)當時,所以要使方程有兩個不相等的實數(shù)根,則的取值范圍是;

綜上所述,當時,的取值范圍是;當時,的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點A,B關于坐標原點O對稱,,以M為圓心的圓過A,B兩點,且與直線相切,若存在定點P,使得當A運動時,為定值,則點P的坐標為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市某區(qū)2018年房地產(chǎn)價格因棚戶區(qū)改造實行貨幣化補償,使房價快速走高,為抑制房價過快上漲,政府從20192月開始采用實物補償方式(以房換房),3月份開始房價得到很好的抑制,房價漸漸回落,以下是20192月后該區(qū)新建住宅銷售均價的數(shù)據(jù):

月份

3

4

5

6

7

價格(百元/平方米)

83

82

80

78

77

1)研究發(fā)現(xiàn),3月至7月的各月均價(百元/平方米)與月份之間具有較強的線性相關關系,求價格(百元/平方米)關于月份的線性回歸方程;

2)用表示用(1)中所求的線性回歸方程得到的與對應的銷售均價的估計值,3月份至7月份銷售均價估計值與實際相應月份銷售均價差的絕對值記為,即,.,則將銷售均價的數(shù)據(jù)稱為一個好數(shù)據(jù),現(xiàn)從5個銷售均價數(shù)據(jù)中任取2個,求抽取的2個數(shù)據(jù)均是好數(shù)據(jù)的概率.

參考公式:回歸方程系數(shù)公式,;參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經(jīng)過統(tǒng)計繪制如圖,其中各項統(tǒng)計不重復.若該市老年低收入家庭共有900戶,則下列說法錯誤的是( 。

A.該市總有 15000 戶低收入家庭

B.在該市從業(yè)人員中,低收入家庭共有1800戶

C.在該市無業(yè)人員中,低收入家庭有4350戶

D.在該市大于18歲在讀學生中,低收入家庭有 800 戶

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】P是圓上的動點,P點在x軸上的射影是D,點M滿足

1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;

2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點在⊙O上,A,BC,D恰是一個正方形的四個頂點.根據(jù)規(guī)劃要求,在A,BC,D四點處安裝四盞照明設備,從圓心O點出發(fā),在地下鋪設4條到AB,C,D四點線路OA,OB,OC,OD.

1)若正方形邊長為10米,求廣場的面積;

2)求鋪設的4條線路OAOB,OC,OD總長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

(Ⅰ)求直線的直角坐標方程與曲線的普通方程;

(Ⅱ)已知點設直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在等腰梯形中,兩腰,底邊的三等分點,的中點.分別沿將四邊形折起,使重合于點,得到如圖2所示的幾何體.在圖2中,分別為的中點.

(1)證明:平面

(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為推動實施健康中國戰(zhàn)略,樹立國家大衛(wèi)生、大健康概念,手機APP也推出了多款健康運動軟件,如微信運動,楊老師的微信朋友圈內(nèi)有位好友參與了微信運動,他隨機選取了位微信好友(女人,男人),統(tǒng)計其在某一天的走路步數(shù),其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:

5860

8520

7326

6798

7325

8430

3216

7453

11754

9860

8753

6450

7290

4850

10223

9763

7988

9176

6421

5980

男性好友走路的步數(shù)情況可分為五個類別:步(說明表示大于等于,小于等于,下同),步,步,步,步及以上,且三種類別人數(shù)比例為,將統(tǒng)計結果繪制如圖所示的條形圖,若某人一天的走路步數(shù)超過步被系統(tǒng)認定為衛(wèi)健型,否則被系統(tǒng)認定為進步型”.

1)若以楊老師選取的好友當天行走步數(shù)的頻率分布來估計所有微信好友每日走路步數(shù)的概率分布,請估計楊老師的微信好友圈里參與微信運動名好友中,每天走路步數(shù)在步的人數(shù);

2)請根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表并據(jù)此判斷能否有以上的把握認定認定類型性別有關?

衛(wèi)健型

進步型

總計

20

20

總計

40

附:,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案