【題目】如圖是函數(shù)y=Asin(ωx+φ)( , )圖
像的一部分.為了得到這個函數(shù)的圖像,只要將y=sin x(x∈R)的圖像上所有的點( )
A. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變.
B. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變.
C. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變.
D. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變.
【答案】A
【解析】很明顯,
結(jié)合函數(shù)的圖象可得: ,則,
當時, ,
令可得: ,
故三角函數(shù)的解析式為: ,
據(jù)此可知,要得到此函數(shù)的圖象,
只需將y=sin x(x∈R)的圖像上所有的點向左平移個單位長度,
再把所得各點的橫坐標縮短到原來的,縱坐標不變.
本題選擇A選項.
點睛對于三角函數(shù)圖象的平移變換問題,其平移變換規(guī)則是“左加、右減”,并且在變換過程中只變換其中的自變量x,如果x的系數(shù)不是1,就要把這個系數(shù)提取后再確定變換的單位和方向.另外,當兩個函數(shù)的名稱不同時,首先要將函數(shù)名稱統(tǒng)一,其次要把ωx+φ變換成,最后確定平移的單位并根據(jù)的符號確定平移的方向.
科目:高中數(shù)學 來源: 題型:
【題目】圖1,平行四邊形中, , ,現(xiàn)將沿折起,得到三棱錐(如圖2),且,點為側(cè)棱的中點.
(1)求證: 平面;
(2)求三棱錐的體積;
(3)在的角平分線上是否存在點,使得平面?若存在,求的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年5月20日,針對部分“二線城市”房價上漲過快,媒體認為國務院常務會議可能再次確定五條措施(簡稱“國五條”).為此,記者對某城市的工薪階層關于“國五條”態(tài)度進行了調(diào)查,隨機抽取了人,作出了他們的月收入的頻率分布直方圖(如圖),同時得到了他們的月收入情況與“國五條”贊成人數(shù)統(tǒng)計表(如下表):
月收入(百元) | 贊成人數(shù) |
(1)試根據(jù)頻率分布直方圖估計這人的中位數(shù)和平均月收入;
(2)若從月收入(單位:百元)在的被調(diào)查者中隨機選取人進行追蹤調(diào)查,求被選取的人都不贊成的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓的中心為原點,長軸在軸上,上頂點為,左,右焦點分別為,線段的中點分別為,且 是面積為4的直角三角形.
(1)求該橢圓的離心率和標準方程;
(2)過做直線交橢圓于兩點,使,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(Ⅰ)設不等式對滿足的一切實數(shù)的取值都成立,求的取值范圍;
(Ⅱ)是否存在實數(shù),使得不等式對滿足的一切實數(shù)的取值都成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以點C(t,) (t∈R,t≠0)為圓心的圓與x軸交于點O、A,與y軸交于點O、B,其中O為原點.
(1)求證:△AOB的面積為定值;
(2)設直線2x+y﹣4=0與圓C交于點M、N,若OM=ON,求圓C的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com