【題目】如圖是函數(shù)yAsin(ωxφ)( , )

像的一部分.為了得到這個函數(shù)的圖像,只要將y=sin x(x∈R)的圖像上所有的點( )

A. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變.

B. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變.

C. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變.

D. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變.

【答案】A

【解析】很明顯

結(jié)合函數(shù)的圖象可得: ,,

,

可得 ,

故三角函數(shù)的解析式為: ,

據(jù)此可知,要得到此函數(shù)的圖象,

只需將ysin x(xR)的圖像上所有的點向左平移個單位長度,

再把所得各點的橫坐標縮短到原來的,縱坐標不變.

本題選擇A選項.

點睛對于三角函數(shù)圖象的平移變換問題,其平移變換規(guī)則是左加、右減,并且在變換過程中只變換其中的自變量x,如果x的系數(shù)不是1,就要把這個系數(shù)提取后再確定變換的單位和方向.另外,當兩個函數(shù)的名稱不同時,首先要將函數(shù)名稱統(tǒng)一,其次要把ωxφ變換成,最后確定平移的單位并根據(jù)的符號確定平移的方向.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面底面,,,,的中點,側(cè)棱

(1)求證:平面

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖1,平行四邊形中, , ,現(xiàn)將沿折起,得到三棱錐(如圖2),且,點為側(cè)棱的中點.

(1)求證: 平面

(2)求三棱錐的體積;

(3)在的角平分線上是否存在點,使得平面?若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年5月20日,針對部分“二線城市”房價上漲過快,媒體認為國務院常務會議可能再次確定五條措施(簡稱“國五條”).為此,記者對某城市的工薪階層關于“國五條”態(tài)度進行了調(diào)查,隨機抽取了人,作出了他們的月收入的頻率分布直方圖(如圖),同時得到了他們的月收入情況與“國五條”贊成人數(shù)統(tǒng)計表(如下表):

月收入(百元)

贊成人數(shù)

(1)試根據(jù)頻率分布直方圖估計這人的中位數(shù)和平均月收入;

(2)若從月收入(單位:百元)在的被調(diào)查者中隨機選取人進行追蹤調(diào)查,求被選取的人都不贊成的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓的中心為原點,長軸在軸上,上頂點為,左,右焦點分別為,線段的中點分別為,且 是面積為4的直角三角形.

1)求該橢圓的離心率和標準方程;

2)過做直線交橢圓于兩點,使,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,底面是邊長為2的菱形, ,且平面.

1證明:平面平面;

2若平面與平面的夾角為,試求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(Ⅰ)設不等式對滿足的一切實數(shù)的取值都成立,求的取值范圍;

(Ⅱ)是否存在實數(shù),使得不等式對滿足的一切實數(shù)的取值都成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知以點C(t,) (t∈R,t≠0)為圓心的圓與x軸交于點O、A,與y軸交于點O、B,其中O為原點.
(1)求證:△AOB的面積為定值;
(2)設直線2x+y﹣4=0與圓C交于點M、N,若OM=ON,求圓C的方程.

查看答案和解析>>

同步練習冊答案