【題目】如圖,在三棱柱中,平面底面,,,,,為的中點,側棱.
(1)求證:平面;
(2)求直線與平面所成角的余弦值.
【答案】(1)見解析;(2).
【解析】試題分析: (1)由和平面平面,平面平面,可推得平面,進而推得, 又,根據(jù)線面垂直的判定定理即可證得;(2)∵面面,∴在面上的射影在上,∴為直線與面所成的角.求出CH和,代入計算即可.
試題解析:(1)證明:∵,為的中點,∴,又平面平面,平面平面,∴平面,又平面,∴.
又,,∴面.
(2)∵面面,∴在面上的射影在上,∴為直線與面所成的角.過作于,連,
在中,.
在中,.
∴在中,.
∴直線與面所成的角的余弦值為
點睛:本題考查的是線面垂直的判定定理的應用以及求線面角,屬于中檔題目. 判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條直線也垂直這個平面.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率.以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點為橢圓上一點,直線的方程為,求證:直線與橢圓有且只有一個交點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣[x],其中[x]表示不超過實數(shù)x的最大整數(shù).若關于x的方程f(x)=kx+k有三個不同的實根,則實數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某校高一年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合計 | 1 |
(1)求出表中及圖中的值;
(2)試估計他們參加社區(qū)服務的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至少1人參加社區(qū)服務次數(shù)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果數(shù)據(jù)x1 , x2 , …,xn的平均數(shù)是 ,方差是S2 , 則2x1+3,2x2+3,…,2xn+3的平均數(shù)和方差分別是( )
A. 和S
B.2 +3和4S2
C. 和S2
D. 和4S2+12S+9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=f(x)(x∈R)的圖象過點(0,﹣3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函數(shù) 的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)y=Asin(ωx+φ)( , )圖
像的一部分.為了得到這個函數(shù)的圖像,只要將y=sin x(x∈R)的圖像上所有的點( )
A. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變.
B. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變.
C. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變.
D. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com