11.設(shè)$\overrightarrow a=(1\;,\;2)\;,\;\overrightarrow b=(1\;,\;1)$,$\overrightarrow c=\overrightarrow a+k\overrightarrow b$,若$\overrightarrow b⊥\overrightarrow c$,則實(shí)數(shù)k=( 。
A.$-\frac{3}{2}$B.$-\frac{5}{3}$C.$\frac{5}{3}$D.$\frac{3}{2}$

分析 由平面向量坐標(biāo)運(yùn)算法則求出$\overrightarrow{c}$,由此利用向量垂直的性質(zhì)能求出結(jié)果.

解答 解:∵$\overrightarrow a=(1\;,\;2)\;,\;\overrightarrow b=(1\;,\;1)$,
∴$\overrightarrow c=\overrightarrow a+k\overrightarrow b$=(1+k,2+k),
∴$\overrightarrow b⊥\overrightarrow c$,
∴$\overrightarrow•\overrightarrow{c}$=1+k+2+k=0,
解得實(shí)數(shù)k=-$\frac{3}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平面向量坐標(biāo)運(yùn)算法則、向量垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+a-1|+|x-2a|.
(Ⅰ) 若f(1)<3,求實(shí)數(shù)a的取值范圍;
(Ⅱ) 若a≥1,x∈R,求證:f(x)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}是等比數(shù)列,且a1=32,a6=-1,則公比q=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知過雙曲線:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦點(diǎn)F2作圓x2+y2=a2的切線,交雙曲線的左支于點(diǎn)A,且AF1⊥AF2,則雙曲線的離心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.方程(1+4k)x-(2-3k)y+2-14k=0所確定的直線必經(jīng)過點(diǎn)(  )
A.(2,2)B.(-2,2)C.(-6,2)D.(3,-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(n)=sin($\frac{nπ}{2}$+$\frac{π}{4}$)(n∈N+),則f(1)+f(2)+f(3)+…+f(2010)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.[已知銳角三角形ABC中,角A,B,C所對(duì)邊分別為a,b,c滿足$\sqrt{\frac{1-cos2C}{2}}+sin(B-A)=2sin2A$.
(Ⅰ)求$\frac{a}$;  
 (Ⅱ)若AB是最大邊,求cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)=x2f'(1)-3x,則f'(2)的值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知公比為q的等比數(shù)列{an}的前6項(xiàng)和S6=63,且$4{a_1},\frac{3}{2}{a_2},{a_2}$成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè){bn}是首項(xiàng)為2,公差為-a1的等差數(shù)列,其前n項(xiàng)和為Tn,是否存在n∈N*,使得不等式Tn>bn成立?若存在,求出n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案