【題目】如圖: 為所在平面外一點, , , , 平面于.求證:
(1)是的垂心;
(2)為銳角三角形.
【答案】(1)詳見解析;(2)詳見解析.
【解析】試題分析:(1) 連接并延長交與點由三條側(cè)棱, 兩兩垂直可以得到平面,進而得到 ,由平面 ,可得 ,故∴平面,
,即可得, 同理可證: , ,可得是的垂心.
(2)可以通過余弦定理解決.
試題解析:證明:(1)連接并延長交與點,連接.
∵, ,
∴img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/14/092b1670/SYS201712291412523815724471_DA/SYS201712291412523815724471_DA.027.png" width="39" height="17" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />平面
∵直線在平面內(nèi)
∴
又∵平面
∴
又
∴平面
又∵直線在平面內(nèi)
∴
連接并延長交與點,連接;連接并延長交與點,連接.
同理可證: ,
故是的垂心.
(2)設(shè), , ,則, , .
∵
∴為銳角.
同理可證: 也為銳角
故證得為銳角三角形.
點晴:本題考查是空間的直線與平面的垂直問題和三角形是銳角三角形的證明.第一問充分借助已知條件與判定定理,證明直線與平面垂直,得直線與直線垂直,從而得是的垂心.關(guān)于第二問中的三角形是銳角三角形問題,解答時可以通過設(shè)邊,由, , ,則, , ,然后用余弦定理解決.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若,求曲線在點處的切線方程;
(2)若,求零點的個數(shù);
(3)若為整數(shù),且當(dāng)時, 恒成立,求的最大值.
(參考數(shù)據(jù), , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量, ,設(shè)函數(shù).
(1)求函數(shù)的最小正周期;
(2)已知分別為三角形的內(nèi)角對應(yīng)的三邊長, 為銳角, , ,且恰是函數(shù)在上的最大值,求和三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】畫出下列函數(shù)的圖像,并根據(jù)圖像說出函數(shù)y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上函數(shù)y=f(x)是增函數(shù)還是減函數(shù)。
(1)y=x2-5x-6; (2)y=|4-x2|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校進行體驗,現(xiàn)得到所有男生的身高數(shù)據(jù),從中隨機抽取50人進行統(tǒng)計(已知這50個身高介于155 到195之間),現(xiàn)將抽取結(jié)果按如下方式分成八組:第一組,第二組,…,第八組,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組和第七組還沒有繪制完成,已知第一組與第八組人數(shù)相同,第六組和第七組人數(shù)的比為5:2.
(1)補全頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計這50位男生身高的中位數(shù);
(3)用分層抽樣的方法在身高為內(nèi)抽取一個容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象的一條切線為軸.(1)求實數(shù)的值;(2)令,若存在不相等的兩個實數(shù)滿足,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知曲線: ,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線: .
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的、2倍后得到曲線,求的參數(shù)方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率利潤保費收入)的頻率分布直方圖如圖所示:
(1)試估計這款保險產(chǎn)品的收益率的平均值;
(2)設(shè)每份保單的保費在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量為(萬份).從歷史銷售記錄中抽樣得到如下5組與的對應(yīng)數(shù)據(jù):
元 | 25 | 30 | 38 | 45 | 52 |
銷量為(萬份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
由上表,知與有較強的線性相關(guān)關(guān)系,且據(jù)此計算出的回歸方程為.
(。┣髤(shù)的值;
(ⅱ)若把回歸方程當(dāng)作與的線性關(guān)系,用(1)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問每份保單的保費定為多少元時此產(chǎn)品可獲得最大利潤,并求出最大利潤.注:保險產(chǎn)品的保費收入每份保單的保費銷量.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com