12.若集合A={x|-2<x<1},B={x|0<x<2},則集合A∪B=( 。
A.{x|-1<x<1}B.{x|-2<x<2}C.{x|0<x<1}D.{x|1<x<2}

分析 利用并集定義求解.

解答 解:∵集合A={x|-2<x<1},B={x|0<x<2},
∴集合A∪B={x|-2<x<2}.
故選:B.

點評 本題考查并集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意并集定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)是偶函數(shù),而且在(0,+∞)上是減函數(shù),判斷f(x)在(-∞,0)上是增函數(shù)還是減函數(shù),并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.橢圓C的中心為原點,焦點在y軸上,離心率$e=\frac{{\sqrt{2}}}{2}$,橢圓上的點到焦點的最短距離為$\sqrt{2}-1$,則橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合M={x|x2+3x<4},N={-2,-1,0,1,2},則M∩N=( 。
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-2,-1,0}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.對x∈R,定義函數(shù)sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$
(1)求方程x2-3x+1=sgn(x)的根;
(2)設(shè)函數(shù)f(x)=[sgn(x-2)]•(x2-2|x|),若關(guān)于x的方程f(x)=x+a有3個互異的實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若c=$\sqrt{2}$,b=$\sqrt{6}$,B=120°,則a等于( 。
A.$\sqrt{6}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知直線l,m,n,a,b,平面α,β,γ,有以下命題:
①l∥α,l⊥a⇒a⊥α
②m∥α,n∥α⇒n∥m
③m⊥γ,n⊥γ⇒m∥n
④α⊥γ,β⊥γ⇒α∥β
⑤a∥b,a⊥α⇒b⊥α
⑥a?α,b?β,α∥β⇒a∥b
其中不正確的命題是①②④⑥.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與圓(x-3)2+y2=9相交于A,B兩點,若|AB|=2,則該雙曲線的離心率為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.二次函數(shù)f(x)=x2+2ax+b在區(qū)間(-∞,4)上是減函數(shù),你能確定的是( 。
A.a≥2B.b≥2C.a≤-4D.b≤-4

查看答案和解析>>

同步練習(xí)冊答案