【題目】已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a≠0),對任意的x∈R,都有f(x﹣4)=f(2﹣x)成立,
(1)求2a﹣b的值;
(2)函數(shù)f(x)取得最小值0,且對任意x∈R,不等式x≤f(x)≤( )2恒成立,求函數(shù)f(x)的解析式;
(3)若方程f(x)=x沒有實數(shù)根,判斷方程f(f(x))=x根的情況,并說明理由.
【答案】
(1)解:由f(x﹣4)=f(2﹣x)成立,可得函數(shù)y=f(x)圖象的對稱軸方程為x= =﹣1,
∴﹣ =﹣1,∴2a﹣b=0
(2)解:當x=﹣1 時,f(x)=a﹣b+c=0,
對于不等式x≤f(x)≤( )2 ,當x=1時,有1≤f(1)≤1,∴f(1)=a+b+c=1.
由以上方程解得 a= =c,b= ,∴函數(shù)的解析式為
(3)解:因為方程f(x)=x無實根,所以當a>0時,不等式f(x)>x恒成立,
∴f(f(x))>f(x)>x,故方程f(f(x))=x無實數(shù)解.
當a<0時,不等式f(x)<x恒成立,∴f(f(x))<f(x)<x,
故方程f(f(x))=x無實數(shù)解,
綜上得:方程f(f(x))=x無實數(shù)解
【解析】(1)由f(x﹣4)=f(2﹣x)成立,可得函數(shù)y=f(x)圖象的對稱軸方程為 x=﹣ =﹣1,由此求得 2a﹣b的值. (2)當x=﹣1 時,f(x)=a﹣b+c=0,對于不等式x≤f(x)≤( )2 , 當x=1時,由1≤f(1)≤1,可得f(1)=a+b+c=1.求得a、b、c的值,可得函數(shù)的解析式.(3)由題意可得,當a>0時,不等式f(x)>x恒成立,f(f(x))>f(x)>x,方程f(f(x))=x無實數(shù)解.當a<0時,由不等式f(x)<x恒成立,可得f(f(x))<f(x)<x,方程f(f(x))=x無實數(shù)解,綜合可得結(jié)論.
【考點精析】關(guān)于本題考查的二次函數(shù)的性質(zhì),需要了解當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=﹣x2+(3﹣2m)x+2+m(0<m≤1).
(1)若x∈[0,m],證明:f(x)≤ ;
(2)求|f(x)|在[﹣1,1]上的最大值g(m).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)(x∈R)為奇函數(shù),f(1)= ,f(x+2)=f(x)+f(2),則f(5)=( )
A.0
B.1
C.
D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓的極坐標方程為.若以極點為原點,極軸所在直線為軸建立平面直角坐標系.
(Ⅰ)求圓的參數(shù)方程;
(Ⅱ)在直角坐標系中,點是圓上動點,試求的最大值,并求出此時點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù), ().
(Ⅰ)求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)當時,記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面莖葉圖表示的是甲、乙兩人在5次綜合測評中的成績(成績?yōu)檎麛?shù),滿分為100),其中一個數(shù)字被污損,則乙的平均成績不低于甲的平均成績的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從一批土雞蛋中,隨機抽取n個得到一個樣本,其重量(單位:克)的頻數(shù)分布表如表:
分組(重量) | [80,85) | [85,90) | [90,95) | [95,100] |
頻數(shù)(個) | 10 | 50 | m | 15 |
已知從n個土雞蛋中隨機抽取一個,抽到重量在在[90,95)的土雞蛋的根底為
(1)求出n,m的值及該樣本的眾數(shù);
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的土雞蛋中共抽取5個,再從這5個土雞蛋中任取2 個,其重量分別是g1 , g2 , 求|g1﹣g2|≥10概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平行六面體ABCD﹣A1B1C1D1中,側(cè)棱B1B長為3,底面是邊長為2的菱形,∠A1AB=120°,∠A1AD=60°,點E在棱B1B上,則AE+C1E的最小值為( 。
A.
B.5
C.2
D.7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐的側(cè)棱底面,且底面是直角梯形,,,,點在側(cè)棱上.
(1)求證:平面;
(2)若側(cè)棱與底面所成角的正切值為,點為側(cè)棱的中點,求異面直線與所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com