18.已知復(fù)數(shù)z滿足i•z=3-4i(其中i為虛數(shù)單位),則|z|=5.

分析 利用復(fù)數(shù)的運算法則、模的計算公式即可得出.

解答 解:復(fù)數(shù)z滿足i•z=3-4i(其中i為虛數(shù)單位),
∴-i•i•z=-i(3-4i),
∴z=-3i-4.
則|z|=$\sqrt{(-4)^{2}+(-3)^{2}}$=5.
故答案為:5.

點評 本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{2}}{2}$,右焦點為F,上頂點為A,且△AOF的面積為$\frac{1}{2}$(O為坐標(biāo)原點).
(1)求橢圓C的方程;
(2)若點M在以橢圓C的短軸為直徑的圓上,且M在第一象限,過M作此圓的切線交橢圓于P,Q兩點.試問△PFQ的周長是否為定值?若是,求此定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sin2xcos$\frac{π}{5}-cos2xsin\frac{π}{5}$.
(Ⅰ)求函數(shù)f(x)的最小正周期和對稱軸的方程;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.全世界人們越來越關(guān)注環(huán)境保護(hù)問題,某監(jiān)測站點于2016年8月某日起連續(xù)n天監(jiān)測空氣質(zhì)量指數(shù)(AQI),數(shù)據(jù)統(tǒng)計如下:
空氣質(zhì)量指數(shù)(μg/m3)區(qū)間[0,50)[50,100)[100,150)[150,200)[200,250)
空間質(zhì)量等級空氣優(yōu)空氣良輕度污染中度污染重度污染
天數(shù)2040m105
(1)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出n,m的值,并完成頻率分布直方圖;
(2)由頻率分布直方圖求該組數(shù)據(jù)的平均數(shù)與中位數(shù);
(3)在空氣質(zhì)量指數(shù)分別屬于[50,100)和[150,200)的監(jiān)測數(shù)據(jù)中,用分層抽樣的方法抽取5天,再從中任意選取2天,求事件A”兩天空氣都為良“發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+3≥0}\\{3x+2y-6≤0}\end{array}\right.$,若?x、y使得2x-y<m,則實數(shù)m的取值范圍是m>-$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線x2+ny2=1(n∈R)與橢圓$\frac{x^2}{6}+\frac{y^2}{2}=1$有相同的焦點,則該雙曲線的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.由于渤海海域水污染嚴(yán)重,為了獲得第一手的水文資料,潛水員需要潛入水深為60米的水底進(jìn)行作業(yè),根據(jù)經(jīng)驗,潛水員下潛的平均速度為v(米/單位時間),每單位時間消耗氧氣${(\frac{v}{10})^3}+1$(升),在水底作業(yè)10個單位時間,每單位時間消耗氧氣0.9(升),返回水面的平均速度為$\frac{v}{2}$(米/單位時間),每單位時間消耗氧氣1.5(升),記該潛水員完成此次任務(wù)的消耗氧氣總量為y(升).
(1)求y關(guān)于v的函數(shù)關(guān)系式;
(2)若c≤v≤15(c>0),求當(dāng)下潛速度v取什么值時,消耗氧氣的總量最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知等比數(shù)列{an}中,a3a9=2a52,且a3=2,則a5=( 。
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,其中b≠c,
且bcosB=ccosC,延長線段BC到點D,使得BC=4CD=4,∠CAD=30°,
(Ⅰ)求證:∠BAC是直角;
(Ⅱ)求tan∠D的值.

查看答案和解析>>

同步練習(xí)冊答案