【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多有創(chuàng)意的求法,如著名的普豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)120名同學(xué)每人隨機(jī)寫(xiě)下一個(gè)x,y都小于1的正實(shí)數(shù)對(duì),再統(tǒng)計(jì)其中xy能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù)m,最后根據(jù)統(tǒng)計(jì)個(gè)數(shù)m估計(jì)的值.如果統(tǒng)計(jì)結(jié)果是,那么可以估計(jì)的值為( )

A.B.C.D.

【答案】B

【解析】

由試驗(yàn)結(jié)果知120對(duì)01之間的均勻隨機(jī)數(shù),滿(mǎn)足,面積為1,兩個(gè)數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì),滿(mǎn)足, ,面積為,由幾何概型概率計(jì)算公式,得出所取的點(diǎn)在圓內(nèi)的概率是圓的面積比正方形的面積,二者相等即可估計(jì)π的值.

由題意,120名同學(xué)隨機(jī)寫(xiě)下的實(shí)數(shù)對(duì)落在由的正方形內(nèi),其面積為1

兩個(gè)數(shù)能與1構(gòu)成鈍角三角形應(yīng)滿(mǎn)足

此為一弓形區(qū)域,其面積為.由題意,解得,故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離之和為4.

(1)求動(dòng)點(diǎn)的軌跡方程

(2)若軌跡與直線(xiàn)交于兩點(diǎn),且的值.

(3)若點(diǎn)與點(diǎn)在軌跡上,且點(diǎn)在第一象限,點(diǎn)在第二象限,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),求證:當(dāng)時(shí),三角形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已過(guò)拋物線(xiàn)的焦點(diǎn)作直線(xiàn)交拋物線(xiàn),兩點(diǎn),以,兩點(diǎn)為切點(diǎn)作拋物線(xiàn)的切線(xiàn),兩條直線(xiàn)交于點(diǎn).

1)當(dāng)直線(xiàn)平行于軸時(shí),求點(diǎn)的坐標(biāo);

2)當(dāng)時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,數(shù)列的前n項(xiàng)和為,且;數(shù)列的前n項(xiàng)和為,且滿(mǎn)足,且.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的通項(xiàng)公式;

3)設(shè),問(wèn):數(shù)列中是否存在不同兩項(xiàng),,i,),使仍是數(shù)列中的項(xiàng)?若存在,請(qǐng)求出i,j;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),以極軸所在直線(xiàn)為軸建立直角坐標(biāo)系,曲線(xiàn)分別與軸正半軸和軸正半軸交于點(diǎn),為直線(xiàn)上任意一點(diǎn),點(diǎn)在射線(xiàn)上運(yùn)動(dòng),且

1)求曲線(xiàn)的直角坐標(biāo)方程;

2)求點(diǎn)軌跡圍成的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為.

1)寫(xiě)出的普通方程和的直角坐標(biāo)方程;

2)若相交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若,求的最大值;

(2)當(dāng)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三角形中,,平面與半圓弧所在的平面垂直,點(diǎn)為半圓弧上異于的動(dòng)點(diǎn),的中點(diǎn).

1)求證:

2)求三棱錐體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為為參數(shù), ).

(1)求曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;

(2)若曲線(xiàn)上的動(dòng)點(diǎn)到直線(xiàn)的最大距離為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案