11.在用數(shù)學(xué)歸納法求證:1+2+3+…+2n=$\frac{2n(1+2n)}{2}$(n∈N*)的過程中,則當(dāng)n=k+1時(shí),左端應(yīng)在n=k時(shí)的左端上加上4k+3.

分析 求出n=k時(shí)左邊的表達(dá)式,求出n=k+1時(shí)左邊的表達(dá)式,通過求差即可得到左端增加的表達(dá)式.

解答 解:當(dāng)n=k時(shí),等式左端=1+2+3+…+2k,
當(dāng)n=k+1時(shí),等式左端=1+2+…+2k+(2k+1)+(2k+2),
即當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上2k+1+2k+2即為4k+3
故答案為:4k+3

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查數(shù)學(xué)歸納法的證明方法,就是n=k到n=k+1時(shí)的證明方法,找出規(guī)律解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a,b,c,d∈(0,+∞),求證:$\frac{ad+bc}{bd}$+$\frac{bc+ad}{ac}$≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)f(x)是定義域R上的函數(shù),且f(0)=1,對(duì)任意x,y∈R,恒有f(x-y)=f(x)-y(2x-y+1),求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=2$\sqrt{2-x}$+$\sqrt{2x-3}$的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知坐標(biāo)原點(diǎn)為O,過拋物線y2=4x的焦點(diǎn)F作一直線l,與拋物線交于A,B兩點(diǎn),若|$\overrightarrow{AB}$|=6,則$\overrightarrow{FA}$$•\overrightarrow{FB}$=(  )
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映某區(qū)域道路網(wǎng)在某特定時(shí)段內(nèi)暢通或擁堵實(shí)際情況的概念性指數(shù)值.交通指數(shù)范圍為(0,10),五個(gè)級(jí)別規(guī)定如下:
交通指數(shù)(0,2)[2,4)[4,6)[6,8)[8,10)
級(jí)別暢通基本暢通輕度擁堵中度擁堵嚴(yán)重?fù)矶?/TD>
某人在工作日上班出行每次經(jīng)過的路段都在同一個(gè)區(qū)域內(nèi),他隨機(jī)記錄了上班的40個(gè)工作日早高峰時(shí)段(早晨7點(diǎn)至9點(diǎn))的交通指數(shù)(平均值),其統(tǒng)計(jì)結(jié)果如直方圖所示.
(Ⅰ)據(jù)此估計(jì)此人260個(gè)工作日中早高峰時(shí)段(早晨7點(diǎn)至9點(diǎn))中度擁堵的天數(shù);
(Ⅱ)若此人早晨上班路上所用時(shí)間近似為:暢通時(shí)30分鐘,基本暢通時(shí)35分鐘,輕度擁堵時(shí)40分鐘,中度擁堵時(shí)50分鐘,嚴(yán)重?fù)矶聲r(shí)70分鐘,以直方圖中各種路況的頻率作為每天遇到此種路況的概率,求此人上班路上所用時(shí)間X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=2bn-1(n∈N*),
(1)求b1,b2,b3,試猜想出{bn}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明;
(2)求和:b1${C}_{n}^{0}$+b2${C}_{n}^{1}$+b3${C}_{n}^{2}$+…+bn+1${C}_{n}^{n}$
(3)求和:(log2b1)•${C}_{n}^{0}$+(log2b2)•${C}_{n}^{1}$+(log2b3)•${C}_{n}^{2}$+…(log2bn+1)•${C}_{n}^{n}$
(4)若M(n)=4+(log2bn)•bn+3,試比較M(n)與8n2-4n的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元,距離陸豐市222千米的梅州也受到了臺(tái)風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖(如圖):
(Ⅰ)試根據(jù)頻率分布直方圖估計(jì)小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)小明向班級(jí)同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過4000元的居民中隨機(jī)抽出2戶進(jìn)行捐款援助,設(shè)抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召該小區(qū)居民為臺(tái)風(fēng)重災(zāi)捐款,小明調(diào)查的50戶居民捐款情況如表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

 經(jīng)濟(jì)損失不超過4000元 經(jīng)濟(jì)損失超過4000元 合計(jì) 
 捐款超過500元 30  
 捐款不超過500元  6 
 合計(jì)   
 P(K2≥k)0.15  0.100.05  0.0250.010  0.0050.001 
 k 2.0722.706  3.8415.024  6.6357.879  10.828
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)全集U={x∈R|x2-3x-4≤0},A={x|x2+y2=4},B={x|y=$\sqrt{3-x}$},則A∪B={x|-1≤x≤3},∁U(A∩B)={x|2<x≤4}.

查看答案和解析>>

同步練習(xí)冊(cè)答案