8.如圖,已知正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn),E為BC的中點(diǎn).
(1)求證:BD⊥平面AB1E;
(2)求三棱錐C-ABD的體積.

分析 (1)由已知正三棱柱得平面ABC⊥平面BCC1B1,結(jié)合E為BC的中點(diǎn)得AE⊥平面BCC1B1,進(jìn)一步可得AE⊥BD,再由棱長(zhǎng)全相等,知Rt△BCD≌Rt△B1BE,得BD⊥B1E,由線面垂直的判定得BD⊥平面AB1E;
(2)在等腰三角形ABC中求出AE,利用等積法求得三棱錐C-ABD的體積.

解答 (1)證明:∵棱柱ABC-A1B1C1是正三棱柱,且E為BC的中點(diǎn),
∴平面ABC⊥平面BCC1B1,AE⊥BC,
又AE⊥BC,且AE?平面ABC,
∴AE⊥平面BCC1B1,而D為CC1中點(diǎn),且BD?平面BCC1B1,
∴AE⊥BD,
由棱長(zhǎng)全相等,知Rt△BCD≌Rt△B1BE,
即∠CBD+∠B1EB=∠BB1E+∠B1EB=90°,
故BD⊥B1E,又AE∩B1E=E,
∴BD⊥平面AB1E;
(2)解:在等腰三角形ABC中,由AC=2,CE=1,得AE=$\sqrt{3}$.
∴${V}_{C-ABD}={V}_{A-BCD}=\frac{1}{3}{S}_{△BCD}•AE$=$\frac{1}{3}×\frac{1}{2}×2×1×\sqrt{3}=\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查直線與平面垂直的判斷,訓(xùn)練了利用等積法求多面體的體積,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在10支鉛筆中,有8支正品,2支次品,從中任取出兩支,則在第一次抽的是次品的條件下,第二次抽的是正品的概率是$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.閱讀如圖的程序框圖,該程序輸出的結(jié)果是(  )
A.12B.132C.11880D.1320

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{2}$,圓x2+y2=$\frac{12}{7}$與直線$\frac{x}{a}$+$\frac{y}$=1相切,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)Q(-4,0)任作一直線l交橢圓C于M,N兩點(diǎn),記$\overrightarrow{MQ}$=λ$\overrightarrow{QN}$,若在線段MN上取一點(diǎn)R,使得$\overrightarrow{MR}$=-λ$\overrightarrow{RN}$,試判斷當(dāng)直線l運(yùn)動(dòng)時(shí),點(diǎn)R是否在某一定直一上運(yùn)動(dòng)?若是,請(qǐng)求出該定直線的方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知變量x,y的取值如表:
  x0134
  Y2.24.34.86.7
利用散點(diǎn)圖觀察,y與x線性相關(guān),其回歸直線方程為$\stackrel{∧}{y}$=0.95x+a,則a的值為( 。
A.0B.2.2C.2.6D.3.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.有下列4個(gè)說(shuō)法
①集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,則-3≤a≤3;
②方程sinx=x的解的個(gè)數(shù)為3個(gè);
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對(duì)稱;
④a∈($\frac{1}{4}$,+∞)時(shí),函數(shù)y=lg(x2+x+a)的值域?yàn)镽;
其中正確的題號(hào)為③.(寫(xiě)出所有正確說(shuō)法的題號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(x)=$\left\{\begin{array}{l}x+1,x≤0\\ x+\frac{4}{x}-a,x>0\end{array}$,若f[f(-$\frac{1}{2}$)]=$\frac{1}{2}$,則a=8,若f(x)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在單位圓x2+y2=1內(nèi)隨機(jī)均勻產(chǎn)生一點(diǎn)(x,y),使得$\left\{{\begin{array}{l}{\sqrt{3}x-y≥0}\\{x+\sqrt{3}y≥0}\end{array}}\right.$成立的概率是( 。
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)全集U={1,2,3,4,5,6},A={2,4,5},B={3,4,5,6},則圖中陰影部分表示的集合為  ( 。
A.(∁UA)∩BB.(∁UA)∩(CUB)C.A∩(∁UB)D.A∪(∁UB)

查看答案和解析>>

同步練習(xí)冊(cè)答案