19.閱讀如圖的程序框圖,該程序輸出的結(jié)果是( 。
A.12B.132C.11880D.1320

分析 直接利用圖表依次計(jì)算得答案.

解答 解:i=12,s=1,12≥10;執(zhí)行
s=1×12=12,i=12-1=11,11≥10;執(zhí)行
s=12×11=132,i=11-1=10,10≥10;執(zhí)行
s=132×10=1320,i=10-1=9,9<10,輸出1320.
故選:D.

點(diǎn)評(píng) 本題考查程序框圖,考查計(jì)算能力和讀取圖表的能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.P是半徑為1的球面上任意一點(diǎn),PA、PB、PC是兩兩互相垂直的三條弦,則PA2+PB2+PC2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,若-3,S5,S10成等差數(shù)列,則S15-S10的最小值為( 。
A.2B.4C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.與直線y=-2x+3平行,且過點(diǎn)(1,2)的直線方程是( 。
A.y=-2x+4B.y=2x+8C.y=-2x-4D.y=-2x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在三棱錐S-ABC中,SA=SB=SC=a,AB=BC=AC=$\sqrt{2}$a,那么SA與平面ABC所成的角的余弦值為(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{10}}}{10}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知cos(α-$\frac{π}{6}$)=$\frac{1}{2}$,則cosα+cos(α-$\frac{π}{3}$)=(  )
A.$\frac{1}{2}$B.$±\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$±\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.拋物線x2=4y的焦點(diǎn)為F,經(jīng)過其準(zhǔn)線與y軸的交點(diǎn)Q的直線與拋物線切于點(diǎn)P,則△FPQ外接圓的標(biāo)準(zhǔn)方程為(x-1)2+y2=2或(x+1)2+y2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn),E為BC的中點(diǎn).
(1)求證:BD⊥平面AB1E;
(2)求三棱錐C-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=\frac{{m{e^x}}}{2}$與函數(shù)g(x)=-2x2-x+1的圖象有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)m取值范圍為( 。
A.[0,1)B.$[0,2)∪\{-\frac{18}{e^2}\}$C.$(0,2)∪\{-\frac{18}{e^2}\}$D.$[0,2\sqrt{e})∪\{-\frac{18}{e^2}\}$

查看答案和解析>>

同步練習(xí)冊(cè)答案