Processing math: 100%
5.設(shè)(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,則a0+a1+a2+…+a11=-2,a11=512.

分析 (1)在二項展開式的通項公式中,令x等于1,即可求得要求式子的值.
(2)利用二項展開式的通項公式,求得a11 的值.

解答 解:在(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11中,令x=-1,
可得a0+a1+a2+…+a11=-2.
a11,即(2x+1)9中x9的系數(shù),故a11=C09•29=512,
故答案為:-2;512.

點評 本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,四邊形ABCD內(nèi)接于⊙O,AD是⊙O的直徑,若∠CBE=70°,則圓心角∠AOC=(  )
A.110°B.120°C.130°D.140°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知P(B|A)=12,P(A)=35,則P(A∩B)等于( �。�
A.56B.910C.110D.310

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等差數(shù)列{an}的前n項和為Sn,且a2=2,S5=15,數(shù)列{an}滿足b1=12,bn+1=n+12nbn(n∈N*),記數(shù)列{bn}的前n項和為Tn
(1)求數(shù)列{an}的通項an及前n項和Sn
(2)求數(shù)列{bn}的通項bn及前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=sin6x+cos6x,給出下列4個結(jié)論:
①f(x)的值域為[0,2];
②f(x)的最小正周期為π2
③f(x)的圖象對稱軸方程為x=kπ4(k∈Z);
④f(x)的圖象對稱中心為(π8+kπ458)(k∈Z)
其中正確結(jié)論的序號是②③④(寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法正確的是( �。�
A.“a+5是無理數(shù)”是“a是無理數(shù)”的充分不必要條件
B.“|a|>|b|”是“a2>b2”的必要不充分條件
C.命題“若a∈M,則b∉M”的否命題是“若a∉M,則b∈M”
D.命題“若a、b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a、b都不是奇數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某工廠生產(chǎn)A,B兩種產(chǎn)品所得利潤分別是P(單位:萬元)和Q(單位:萬元),它們與投入資金t(單位:萬元)的關(guān)系有經(jīng)驗公式P=-13000t3+3100t2,Q=45t,今將50萬元資金投入經(jīng)營A,B兩種產(chǎn)品,其中對A種產(chǎn)品投資為x(單位:萬元),設(shè)經(jīng)營A,B兩種產(chǎn)品的利潤和為總利潤y(單位:萬元).
(1)試建立y關(guān)于x的函數(shù)關(guān)系式,并指出函數(shù)的定義域;
(2)當(dāng)x為多少時,總利潤最大,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知x∈R,試比較2x2-3x+3與22x+2x的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.沿x軸正方向運動的質(zhì)點,在任意位置x米處,所受的力為F(x)=3x2牛頓,則質(zhì)點從坐標(biāo)原點運動到4米處,力F(x)所做的功是( �。�
A.74焦耳B.72焦耳C.70焦耳D.64焦耳

查看答案和解析>>

同步練習(xí)冊答案