【題目】如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)
【解析】
(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點(diǎn)M,連接ME,證明;
(Ⅱ)由題意可知點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.
(Ⅰ)如圖,連接,交于點(diǎn)M,連接ME,則.
因?yàn)?/span>平面,平面,所以平面.
(Ⅱ)因?yàn)?/span>平面ABC,所以點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離.
如圖,設(shè)O是AC的中點(diǎn),連接,OB.因?yàn)?/span>為正三角形,所以,
又平面平面,平面平面,所以平面ABC.
所以點(diǎn)到平面ABC的距離,故三棱錐的體積為
.
而斜三棱柱的體積為.
所以剩余部分的體積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,點(diǎn)是線段上的動(dòng)點(diǎn),則下列說(shuō)法正確的是( )
A.無(wú)論點(diǎn)在上怎么移動(dòng),都有
B.當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),才有與相交于一點(diǎn),記為點(diǎn),且
C.無(wú)論點(diǎn)在上怎么移動(dòng),異面直線與所成角都不可能是
D.當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),直線與平面所成角最大且為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)在處有極值,且,則稱為函數(shù)的“F點(diǎn)”.
(1)設(shè)函數(shù)().
①當(dāng)時(shí),求函數(shù)的極值;
②若函數(shù)存在“F點(diǎn)”,求k的值;
(2)已知函數(shù)(a,b,,)存在兩個(gè)不相等的“F點(diǎn)”,,且,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱錐P-ABC中,平面PAB⊥平面ABC,△ABC是邊長(zhǎng)為的等邊三角形,,點(diǎn)O,M分別是AB,BC的中點(diǎn).
(1)證明:AC//平面POM;
(2)求點(diǎn)B到平面POM的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
(1)經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在內(nèi)的概率.
(3)某經(jīng)銷商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:
A:所有芒果以10元/千克收購(gòu);
B:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),高于或等于250克的以3元/個(gè)收購(gòu),通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鮮花店根據(jù)以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區(qū)間的頻率視為概率,且假設(shè)每天的銷售量相互獨(dú)立.
(1)求在未來(lái)的連續(xù)4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;
(2)用表示在未來(lái)4天里日銷售量不低于100枝的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)準(zhǔn)備組建“文科”興趣特長(zhǎng)社團(tuán),由課外活動(dòng)小組對(duì)高一學(xué)生文科、理科進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問(wèn)卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學(xué)生,低于60分的稱為“理科方向”學(xué)生.
|
(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān)?
(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.
參考公式:,其中.
參考臨界值:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形,,,為的中點(diǎn),為的中點(diǎn),點(diǎn)在線段上,且.
(1)求證:平面;
(2)若平面底面ABCD,且,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856310)
已知函數(shù)f(x)=x++ln x(a∈R).
(Ⅰ)當(dāng)a=2時(shí), 求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的函數(shù)g(x)=-f(x)+ln x+2e(e為自然對(duì)數(shù)的底數(shù))有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com