精英家教網 > 高中數學 > 題目詳情

【題目】某中學準備組建“文科”興趣特長社團,由課外活動小組對高一學生文科、理科進行了問卷調查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統(tǒng)計,將數據按照,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學生,低于60分的稱為“理科方向”學生.

理科方向

文科方向

總計

110

50

總計

1)根據已知條件完成下面列聯(lián)表,并據此判斷是否有99%的把握認為是否為“文科方向”與性別有關?

2)將頻率視為概率,現在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數為,若每次抽取的結果是相互獨立的,求的分布列、期望和方差.

參考公式:,其中.

參考臨界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)列聯(lián)表見解析,有;(2)分布列見解析,, .

【解析】

(1)由頻率分布直方圖可得分數在、之間的學生人數,可得列聯(lián)表.根據列聯(lián)表計算的值,結合參考臨界值表可得到結論;

2)從該校高一學生中隨機抽取1人,求出該人為“文科方向”的概率.由題意,求出分布列,根據公式求出期望和方差.

1)由頻率分布直方圖可得分數在之間的學生人數為,在之間的學生人數為,所以低于60分的學生人數為120.因此列聯(lián)表為

理科方向

文科方向

總計

80

30

110

40

50

90

總計

120

80

200

,

所以有99%的把握認為是否為“文科方向”與性別有關.

2)易知從該校高一學生中隨機抽取1人,則該人為“文科方向”的概率為.

依題意知,所以),所以的分布列為

0

1

2

3

P

所以期望,方差.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面,,,,為棱的中點.

(1)求證:平面;

(2)求點到平面的距離,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著“中華好詩詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩詞經典的熱潮.某社團為調查大學生對于“中華詩詞”的喜好,從甲、乙兩所大學各隨機抽取了40名學生,記錄他們每天學習“中華詩詞”的時間,并整理得到如下頻率分布直方圖:

根據學生每天學習“中華詩詞”的時間,可以將學生對于“中華詩詞”的喜好程度分為三個等級 :

(Ⅰ)從甲大學中隨機選出一名學生,試估計其“愛好”中華詩詞的概率;

()從兩組“癡迷”的同學中隨機選出2人,記為選出的兩人中甲大學的人數,求的分布列和數學期望

()試判斷選出的這兩組學生每天學習“中華詩詞”時間的平均值的大小,及方差的大小.(只需寫出結論)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為響應“文化強國建設”號召,并增加學生們對古典文學的學習興趣,雅禮中學計劃建設一個古典文學熏陶室.為了解學生閱讀需求,隨機抽取200名學生做統(tǒng)計調查.統(tǒng)計顯示,男生喜歡閱讀古典文學的有64人,不喜歡的有56人;女生喜歡閱讀古典文學的有36人,不喜歡的有44.

(1)能否在犯錯誤的概率不超過0.25的前提下認為喜歡閱讀古典文學與性別有關系?

(2)為引導學生積極參與閱讀古典文學書籍,語文教研組計劃牽頭舉辦雅禮教育集團古典文學閱讀交流會.經過綜合考慮與對比,語文教研組已經從這200人中篩選出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜歡古典文學.現從這9名代表中任選3名男生代表和2名女生代表參加交流會,記為參加交流會的5人中喜歡古典文學的人數,求的分布列及數學期望.

附:,其中.

參考數據:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四邊形是邊長為2的菱形,且,,點是線段上的一點.為線段的中點.

(1)若,證明:平面;

(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐PABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC60°E,F分別是BC,PC的中點.

(I)證明:AEPD

(II)ABPA2,

①求異面直線PBAD所成角的正弦值;

②求二面角EAFC的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,為測得河對岸塔的高,先在河岸上選一點,使在塔底的正東方向上,測得點的仰角為60°,再由點沿北偏東15°方向走到位置,測得,則塔的高是(單位:)( )

A. B. C. D. 10

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

已知f(x)=|x+a|(a∈R).

(1)若f(x)≥|2x﹣1|的解集為[0,2],求a的值;

(2)若對任意x∈R,不等式f(x)+|x﹣a|≥3a﹣2恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于數列,若存在常數M>0,對任意的nN*,恒有,則稱數列B-數列.

(1)首項為1,公比q()的等比數列是否為B-數列?請說明理由;

(2)Sn是數列{xn}的前n項和,給出下列兩組論斷:

A組:①數列{xn}B-數列,②數列{xn}不是B-數列

B組:①數列{Sn}B-數列,②數列{Sn}不是B-數列

請以其中一組的一個論斷為條件,另一組的一個論斷為結論組成一個命題.判斷所給命題的真假,并證明你的結論.

(3)若數列{an}、都是B-數列,證明:數列{anbn}也是B-數列

查看答案和解析>>

同步練習冊答案